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Trust, Reciprocity, and Favors 
in Cooperative Relationships†

By Atila Abdulkadiro​     g​lu and Kyle Bagwell*

We study trust, reciprocity, and favors in a repeated trust game 
with private information. In our main analysis, players are willing 
to exhibit trust and thereby facilitate cooperative gains only if such 
behavior is regarded as a favor that must be reciprocated, either 
immediately or in the future. The size of a favor owed may decline 
over time, following neutral periods. Indeed, a favor-exchange 
relationship with this feature improves on a simple favor-exchange 
relationship. In some settings, an infrequent and symmetric 
punishment sustains greater cooperation. A honeymoon period 
followed by favor-exchange or symmetric punishment can also offer 
scope for improvement. (JEL C73, D82, Z13)

A substantial experimental literature confirms that subjects exhibit trust and 
practice reciprocity. For example, Berg, Dickhaut, and McCabe (1995) con-

sider the trust game, in which one subject (the investor) has income and can invest 
by sending some or all of this income to another subject (the trustee), where the 
income sent grows en route and is received as a larger amount. The trustee may then 
choose to reciprocate, by returning some income to the investor. An investor that 
gives income to the trustee has shown trust, since the investor has incurred a cost 
and cannot be sure that the trustee will reciprocate. Berg, Dickhaut, and McCabe 
(1995) find that subjects often exhibit trust and practice reciprocity. In particular, 
evidence of positive reciprocity is reported: many subjects reward kind behavior 
with a kind response. de Quervain et al. (2004) study a modified trust game, in 
which the investor can incur a cost and punish the trustee if the latter does not recip-
rocate. They observe that such punishments often occur, indicating that subjects 
may also practice negative reciprocity, whereby they punish unkind behavior with 
an unkind response.1

1 de Quervain et al. (2004) also use PET scans and investigate the neural basis of punishment, finding evidence 
that humans derive satisfaction from the punishment of defectors. See also King-Casas et al. (2005) for related 
evidence of positive and negative reciprocity in a multi-round trust game. As Fehr and Gächter (2000a) observe,
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In this paper, we study how trusting and reciprocal behaviors may emerge from 
cooperation among self-interested players in a repeated interaction with private 
information. In making the assumption of self-interested players, our purpose is 
not to deny that individuals have social preferences that perhaps include an instinct 
for trust and reciprocity. Rather, our purpose is to better understand the underlying 
advantages that trusting and reciprocal behaviors afford when players have private 
information and gains from cooperation are present.

In the stage game of our repeated trust game with private information, either 
player a is given income, player b is given income, or neither player is given income. 
Each player is privately informed as to whether or not he is the investor. Thus, if a 
player does not receive income, then the player does not observe whether neither 
player received income or the other player received income. Next, if one player 
receives income, then that player may choose to exhibit trust and invest by sending 
some or all of his income to the other player. If a transfer is made, then the level of 
the investment is publicly observed; however, while the investment is value enhanc-
ing on average, the outcome is random. The investment either succeeds or fails, and 
the investment is completely lost when it fails. The trustee privately observes the 
investment outcome. If the investment is successful, then the trustee can reciprocate 
within the period and send some or all of the returns back to the investor. Thus, if 
the investor exhibits trust and reciprocation does not occur within the current period, 
then the investor does not observe whether the trustee elected not to immediately 
reciprocate or the investment failed.

This game is highly stylized, but it serves to introduce two key incentive prob-
lems. First, when a player is selected as the investor, the gains from cooperation can 
be enjoyed only if this player has incentive to reveal that he is the investor and exhib-
its trust by investing in the other player. If a player reveals that he is the investor and 
exhibits trust, then the player has given a favor to the other player. As the investor 
always has the option of pretending that he has not received income, some gain must 
be anticipated when a favor is extended in this way. This gain may take the form of 
a favor that the current trustee now owes the current investor. This favor may be paid 
in the current period if the investment is successful, or it may be paid in the future 
if the players then adopt a path of play for the continuation that favors the current 
investor. We think of the former payment as immediate reciprocity and the latter 
payment as dynamic reciprocity. Second, in the event of a successful investment, if 
the cooperative equilibrium calls for immediate reciprocity, then the trustee must be 
given incentive to reciprocate and thereby reveal that the investment was successful.

More generally, the repeated trust game with private information serves as a sim-
ple framework within which to explore the provision of favors among individuals 
in ongoing relationships. A self-interested individual that extends a favor naturally 
hopes for some gain in return. But the individual may not be able to determine when 
the recipient is in a position to return the favor. The recipient may not be in a posi-
tion to reciprocate immediately, and we capture this possibility by assuming that the 

subjects in public-good games may also practice negative reciprocity. See Camerer (2003) and Fehr and Gachter 
(2000b) for excellent surveys of experimental work. In our working paper (Abdulkadiro​     g​lu and Bagwell 2005), we 
provide further discussion of pyschological and anthropological studies of trust and reciprocity.
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investment may be unsuccessful. As well, while at some point in the future the recip-
ient will be in a position to pay the favor, the individual may not be able to observe 
the date at which this occurs. Further, the individual may find that he is in a position 
to extend another favor before having been paid for his last favor. We capture these 
possibilities with the assumption that each player is privately informed as to whether 
he is the investor, where there is a chance that neither player is the investor.2

In our formal analysis, we follow Abreu, Pearce, and Stacchetti (1986, 1990) and 
characterize equilibria using the concept of self-generation. We thus look for a set 
of payoffs that can be enforced using only continuation payoffs that are drawn from 
that set. We may capture different forms of trust relations by considering different 
self-generating sets. For any given form of trust relation, our approach is then to 
construct and interpret the optimal cooperative strategies of players with bounded 
patience levels. Our approach thus differs from the usual folk-theorem analysis, 
which analyzes the payoffs of players with (approximately) unlimited patience.3

In our main analysis, we consider a trust relation in which the players implement 
a symmetric self-generating line (SSGL) of payoffs. For this trust relation, the self-
generating set of payoffs is a line along which total payoffs sum to a constant value. 
The line is symmetric around the 45-degree line. We show that such a trust relation 
requires that the sum of the investment levels that the players are prepared to make in 
a given period is constant over time. Thus, an SSGL captures trust relations in which 
investment levels across players may change over time but the overall level of invest-
ment does not. We also find that dynamic reciprocity is required for the implementa-
tion of any payoff pair along an SSGL. In particular, the continuation value for the 
investor exceeds that of the trustee following a period without immediate reciprocity.

In this form of trust relation, optimal cooperation among players occurs when 
a highest symmetric self-generating line (HSSGL) is implemented. We construct 
an implementation of an HSSGL. If, for example, players seek to implement the 
symmetric utility pair on the HSSGL, and if, say, player b is the first player to 
receive income, then player b exhibits trust and sends a portion of this income to 
player a. In the following period, the players initiate a favor-exchange relationship, 
in which player b begins as the favored player. Specifically, in the following period, 
the players implement the corner utility pair that represents the lowest (highest) 
payoff for player a (b) along the HSSGL. The implementation of this utility pair 
initially requires that player a transfers all income if he is the investor, while player 
b transfers less than all income if he is the investor. If player a is selected as the 
investor and transfers all income, we may understand that player a’s favor is paid, 
and the game moves to the opposite corner utility pair, at which player a (b) receives 
his highest (lowest) payoff along this HSSGL. The opposite corner is implemented 
analogously. Here, it is player b that owes the favor. In this way, when a player owes 
a favor, the player is induced to admit that he is the investor and pay the favor, since 
the player gains the future reward of becoming the favored player.

2 As discussed in the conclusion, the model may also be interpreted in the context of the market for referrals.
3 Fudenberg, Levine, and Maskin (1994) consider a general class of repeated games with private information 

and establish conditions under which sufficiently patient players can achieve approximately efficient payoffs. We 
may directly apply their findings to our setting and conclude that sufficiently patient players can achieve approxi-
mately the symmetric first-best payoffs even in the absence of immediate reciprocity.
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A novel prediction arises from this implementation: the size of the favor that is 
owed diminishes with the realization of every successive “neutral” state (i.e., the 
state in which neither player has income). Thus, if player a owes a favor to player b, 
then player a transfers all income if player a is immediately selected as the investor; 
however, if a neutral state is experienced first and player a is selected as the investor 
in the next period, then player a can fulfill his favor obligation by transferring less 
than all income. Similarly, if two neutral states are encountered and then player a 
is selected as investor, then player a can fulfill his obligation with an even smaller 
transfer. Intuitively, this process gives player b incentive to transfer some income 
when he is the investor, since otherwise a neutral state would be observed and in the 
next period player b would be favored to a smaller extent. Thus, following several 
neutral periods, the disfavored player acknowledges that a favor is owed but holds 
that less is now required to fulfill the obligation. One may imagine the disfavored 
player remarking: “Yeah, but what have you done for me lately?” The prediction 
that the size of the favor owed deteriorates over time when neutral states are experi-
enced is novel to our framework. Another interesting feature is that implementation 
of HSSGL does not require the use of immediate reciprocity.

In independent work, Hauser and Hopenhayn (2008) study the continuous-time 
model without immediate reciprocity. In this setting, they show that the Pareto fron-
tier is self-generating and thus renegotiation-proof. Hauser and Hopenhayn (2008) 
also provide arguments in support of their conjecture that efficient equilibria are 
characterized by a “forgiveness” property. As discussed above, our HSSGL exhib-
its a similar property following neutral states. Interestingly, and as we show (see 
Section J in the Appendix), the Pareto frontier fails to be renegotiation-proof in our 
discrete-time model when immediate reciprocity is not available.4

Our characterization of HSSGL is also related to work by Athey and Bagwell 
(2001), who characterize the HSSGL of a repeated game in which colluding firms 
are privately informed about their respective costs. For a two-type model, they con-
struct an HSSGL that utilizes “future market share favors” and achieves first-best 
payoffs for colluding firms.5 Intuitively, in both models, players’ actions in a given 
period serve two goals: they determine the extent to which efficiency is achieved 
in that period, and they are the means through which transfers are provided among 
players as a reward or penalty for past behavior. In the present paper, however, the 
players do not have sufficient instruments with which to simultaneously accom-
plish both goals; therefore, an HSSGL does not achieve first-best payoffs.6 We thus 
develop arguments with which to identify the total payoff that is achieved on an 
HSSGL, and we characterize this payoff as a function of model parameters. As well, 
we construct an HSSGL without using a public-randomization device and thereby 

4 Using a different argument, Hopenhayn and Hauser (2008) also briefly consider a discrete-time model and 
provide similar conditions under which the frontier is not self-generating.

5 For related contributions to collusion theory, see Aoyagi (2003); Athey and Bagwell (2008); Athey, Bagwell, 
and Sanchirico (2004); and Skrzypacz and Hopenhayn (2004). Related themes are also explored in macroeconom-
ics; early contributions include Green (1987) and Wang (1995).

6 In Athey and Bagwell’s (2001) collusion model, by contrast, when the firms have the same cost level, they may 
allocate market share asymmetrically and thereby achieve transfers without sacrificing efficiency.
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offer an equilibrium interpretation for favors that decline in size as successive neu-
tral phases are experienced.

The second trust relation that we consider corresponds to the set of strongly sym-
metric equilibria (SSE).7 Here, the self-generating set of payoffs is a line that rests 
along the 45-degree line. In such equilibria, asymmetric continuation values are not 
allowed, and so players cannot use future favors as they do in an HSSGL. But the 
players can provide incentives for trust, if a period without an investor triggers a 
symmetric punishment. Likewise, the players can provide incentives for immediate 
reciprocity, if a symmetric punishment may be initiated once an investment is not 
reciprocated. We show that this trust relation has a feast-or-famine characteristic. In 
particular, players are completely unable to cooperate in SSE, if both informational 
asymmetries are significant (i.e., if a period without an investor often occurs and 
investments are often unsuccessful). But, when either informational asymmetry is 
less significant, the players can construct SSE with payoffs that exceed those under 
autarky. The optimal SSE may then even offer a total payoff exceeding that attained 
on an HSSGL. In fact, as either informational asymmetry gets sufficiently small, the 
optimal SSE yields approximately first-best payoffs.

Intuitively, if the probability that neither player is selected as the investor is small, 
then the players may impose a severe and symmetric punishment when neither 
player reports income. This punishment gives each player a great incentive to be 
honest when he is the investor; furthermore, the punishment is rarely experienced 
along the equilibrium path. It is then possible to use such a construction to gener-
ate equilibrium payoffs that lie above the HSSGL. One interesting feature of this 
construction is that it offers an equilibrium interpretation of negative reciprocity. If 
neither player is “nice” to the other, then the relationship runs the risk of deteriorat-
ing, with both players being “mean” to each other in the future.

We refer to our third trust relation as a hybrid equilibrium since it builds from the 
HSSGL and SSE constructions. In such an equilibrium, players begin with a “honey-
moon” period that is characterized by a high level of trust. If in the first period some 
player is chosen as the investor and makes the appropriate transfer, then the players 
proceed in the next period and thereafter to implement an HSSGL. The player that 
made the first-period investment begins as the favored player. Alternatively, if no 
income is reported in the first period, then the players suffer a symmetric punish-
ment (“break up”). Thus, in a hybrid equilibrium, favor-exchange relationships and 
negative reciprocity are both predicted.

We first compare the optimal hybrid equilibrium with equilibria that implement 
an HSSGL. For a large set of parameters, we show that a honeymoon period is valu-
able: the optimal hybrid equilibrium offers a greater total payoff than is achieved on 
an HSSGL. The underlying insight here is that the first period is unique, since then 
players are not encumbered by obligations that are derived from past favors; hence, 
players may exhibit full trust in the first period.8 In a second comparison, we show 

7 In models of collusion, SSE are analyzed by Abreu, Pearce, and Stacchetti (1986) and Athey, Bagwell, and 
Sanchirico (2004).

8 This prediction is of some special interest in light of Engle-Warnick and Slonim’s (2006) experimental finding 
that subjects in indefinitely repeated trust games exhibit greater trust in the first round.
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that a large set of parameters also exists over which the optimal hybrid equilibrium 
offers a greater total payoff than is obtained in the optimal SSE. We show, however, 
that the optimal SSE can offer a greater total payoff if the probability that neither 
player is selected as the investor is sufficiently small.

Möbius (2001) also studies equilibrium favor provision when the ability to pro-
vide a favor is private information. Möbius studies a continuous-time game in which 
immediate reciprocity is not allowed and focuses on a class of equilibria that cor-
responds to a “chips mechanism.”9 For applications, a potential weakness of the 
continuous-time model is that a player’s capacity to provide a favor evaporates in 
the next instant. In a companion paper (Abdulkadiro​     g​lu and Bagwell 2012), we 
characterize the optimal equilibria of this class for our discrete-time framework. We 
identify an intermediate range of discount factors for which the optimal equilibrium 
of this class corresponds to a simple favor-exchange relationship, in which a player 
waits until his favor is reciprocated before extending another favor and favors owed 
do not diminish in size following neutral states. This relationship offers a strictly 
lower total payoff than is achieved on an HSSGL.

In a discrete-time model without immediate reciprocity, Nayyar (2009) reports 
parameter restrictions under which the implementation of payoffs on the Pareto 
frontier requires that continuation values are drawn from the outer boundary of the 
equilibrium set, where the outer boundary includes the Pareto frontier but is poten-
tially larger. She also provides a partial characterization of the strategies that sup-
port payoffs on the Pareto frontier. Kalla (2010) studies two important extensions 
in discrete time.10 First, he introduces incomplete information regarding players’ 
discount factors. He characterizes sufficient conditions under which patient players 
can separate from impatient players and then implement a favor-exchange relation-
ship. He shows that separation under symmetric equilibria has to take place within 
a finite time period, after which beliefs diverge and separation becomes impossible. 
Second, in a complete-information setting, Kalla introduces scope for risk sharing 
via concave utility functions. He shows that some form of a favor-exchange relation-
ship then becomes possible for all discount factors.

Finally, our paper is also related to Watson’s (1999, 2002) work on long-term 
partnerships with persistent and two-sided incomplete information. In this setting, a 
role for learning is present, and players may “start small;” by contrast, in our model, 
a role for learning does not arise, and indeed players may “start big” with an initial 
honeymoon period.

The paper is organized as follows. Section I presents the model. Section II pro-
vides our findings for HSSGL. Section III contains our analysis of SSE. Section IV 
characterizes optimal hybrid equilibria. Section V concludes. All proofs and the dis-
cussion of intermediate results are located in the Appendix.

9 In a chips mechanism, each player begins the game with an integer N ≥ 1 chips, an investor sends all income 
and receives a chip from the trustee if the trustee currently has a chip, and an investor sends no income if the trustee 
is currently out of chips. For a given discount factor, equilibrium incentive constraints limit the number of chips, N, 
that may be used. See also Skrzypacz and Hopenhayn (2004).

10 Lau (2011) also studies a model with favor exchange. In his model, the costs and benefits of favors are sto-
chastic, and the cost of providing a favor may be private information.
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I.  The Model

We study a stylized model with two players, a and b. In the stage game, either 
player a is given an income of $1, player b is given an income of $1, or neither player 
is given an income. The former two events each occur with probability p ∈ (0, 1/2) 
and the latter event thus occurs with probability 1 − 2p. In any period, a player 
who receives income becomes an investor. Each player is privately informed as to 
whether or not he is the investor. Thus, if a player does not receive income, then the 
player does not observe whether neither player received income or the other player 
received income. If a player receives income, then that player may choose to exhibit 
trust and invest by sending any x ∈ [0, 1] to the other player. The transfers between 
players are publicly observed. The outcome of the investment is random. The invest-
ment either succeeds or fails, where success occurs with probability q < 1. The 
investment produces kx when it is successful, and the investment is completely lost 
otherwise. We assume qk > 1; that is, the investment is value enhancing on aver-
age. The trustee is the player to whom an investment is sent. The trustee privately 
observes the investment outcome. If the investment is successful, then the trustee 
can reciprocate within the period and send some or all of the returns back to the 
investor. Thus, if the investor exhibits trust and reciprocation does not occur within 
the current period, then the investor does not observe whether the trustee elected not 
to reciprocate in the current period or the investment failed. We assume risk neutral 
players in order to abstract from insurance arrangements, and we let β ∈ (0, 1) 
denote the players’ common discount factor.

Let t denote the time index. For i ∈ {a, b}, let ​w​ t​ i​ = 1 if player i receives income 
and ​w​ t​ i​ = 0 otherwise. Player i privately observes ​W​ t​ i​ = {​w​ z​ i ​​ }​ z=1​ t

  ​. Let ​τ​t​ = ( j, x) 
if player j invests in the amount of x > 0 in period t and ​τ​t​ = 0 otherwise. Both 
players observe ​T​t​ = {​τ​z​  ​}​ z=1​ t

  ​. Let ​κ​ t​ i​ = 1 if player j invests in player i and the 
investment succeeds, ​κ​ t​ i​ = 0 if player j invests in player i and the investment fails, 
and ​κ​ t​ i​ = 0/ if player j does not invest in player i. The trustee privately observes 
​K​ t​ i​ = {​κ​ z​ i ​ : ​κ​ z​ i ​ ≠ 0/​}​ z=1​ t

  ​. Since ​κ​ z​ i ​ is relevant only when player j invests, we do not 
consider ​κ​ z​ i ​ = 0/ as part of player i’s private history. Let ​θ​t​ = (i, r) if player j invests 
and player i reciprocates in the amount of r > 0, and ​θ​t​ = 0 otherwise. Both players 
observe ​R​t​ = {​θ​z​​}​ z=1​ t

  ​. Note that ​θ​t​ = 0 when ​τ​t​ = 0; that is, if there is no invest-
ment, then there is no reciprocity by the other player either. Thus, the private history 
of player i at time t is denoted ​h​ t​ i​ = (​W​ t​ i​, ​K​ t​ i​ ), and the public history is denoted 
​H​t​ = (​T​t​, ​R​t​). Let ​​ t​ i​ denote the set of possible private histories, and ​​t​ denote the 
set of public histories at t.

A strategy ​σ​i​ for player i consists of an investment decision ​I​ t​ i​ : ​​ t​ i​ × ​
​t−1​ → [0, 1], such that ​I​ t​ i​(​h​ t​ i​, ​H​t−1​) = 0 when ​w​ t​ i​ = 0, and ​I​ t​ i​(​h​ t​ i​, ​H​t−1​) ∈ [0, 1] if ​
w​ t​ i​ = 1; and a reciprocity decision ​R​ t​ i​ : ​​ t​ i​ × (​​t−1​, ​τ​t​) × [0, 1] → [0, k] such that ​
R​ t​ i​(​h​ t​ i​, ​H​t−1​, ​τ​t​) = 0 if ​τ​t​ ≠ ( j, ​I​ t​ j​ ) or ​κ​ t​ i​ = 0 and ​R​ t​ i​(​h​ t​ i​, ​H​t−1​, ​τ​t​ = ( j, ​I​ t​ j​ )) ∈ [0, k ​I​ t​ j​ ]. 
Note that ​τ​t​ = ( j, ​I​ t​ j​ ) if and only if ​I​ t​ j​ > 0, and ​θ​t​ = (i, ​R​ t​ i​ ) if and only if ​R​ t​ i​ > 0.

Following Fudenberg, Levine, and Maskin (1994), we use the solution concept 
of perfect public equilibrium (PPE). A strategy for player i is public if at every 
period t, it depends only on player i’s current-period private information, (​w​ t​ i​, ​κ​ t​ i​ ), 
and the public history, ​H​t−1​. A PPE is a profile of public strategies that forms a Nash 
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equilibrium at any date, given any public history. Following Abreu, Pearce, and 
Stacchetti (1990), we can define an operator B which yields the set of PPE values, ​
Ψ​∗​, as the largest self-generating set:11

For any set Ψ ⊂ ​ℜ​2​, consider the following mapping: B(Ψ) = {(u, v) : ∃(​u​iθ​, ​v​iθ​) 
∈ Ψ, for i ∈ {a, b} and θ ∈ {0, 1}; (​u​o​, ​v​o​) ∈ Ψ; x, y ∈ [0, 1], r ∈ [0, kx] and 
s ∈ [0, ky] such that

(1)	 IR : u, v, ​u​iθ​, ​v​iθ​, ​u​o​, ​v​o​ ≥ ​ 
p
 _ 

1 − β
 ​ , 

(2)	 I​C​ x​ a​ : 1 − x + q(r + β  ​u​a1​) + (1 − q)β  ​u​ao​ ≥ 1 + β  ​u​o​, 

(3)	 I​C​ y​ b​ : 1 − y + q(s + β  ​v​b1​) + (1 − q)β  ​v​bo​ ≥ 1 + β  ​v​o​, 

(4)	 I​C​ θ​ a​ : ky − s + β  ​u​b1​ ≥ ky + β  ​u​bo​, 

(5)	 I​C​ θ​ b​ : kx − r + β  ​v​a1​ ≥ kx + β  ​v​ao​, 

(6)	 P​K​ a​ : u = p[1 − x + q(r + β  ​u​a1​) + (1 − q)β  ​u​ao​]

	 + p[q(ky − s + β  ​u​b1​) + (1 −  q)β  ​u​bo​] + (1 − 2p)β  ​u​o​, 

(7)	 P​K​ b​  : v = p[1 − y + q(s + β  ​v​b1​) + (1 − q)β  ​v​bo​]

	 + p[q(kx − r + β  ​v​a1​) + (1 − q)β  ​v​ao​] + (1 − 2p)β  ​v​o​}.

Observe that we use u to denote player a’s payoff, x to denote investment level 
by player a, and r to denote the amount that player b reciprocates when the invest-
ment is successful. Similarly, we use v to denote player b’s payoff, y to denote 
the investment level by player b, and s to denote the amount that player a recip-
rocates when the investment is successful. The utility pairs that are induced may 
depend on the public path of play: we use (​u​o​, ​v​o​) to denote the continuation val-
ues that are induced when neither player reports income, and we use (​u​iθ​, ​v​iθ​) to 
denote the continuation values that are induced when player i ∈ {a, b} invests and 
the other player reciprocates (θ = 1) or not (θ = 0). For a given Ψ, we will say that 
{x, y, r, s, ​u​iθ​, ​v​iθ​, ​u​o​, ​v​o​}, for i = a, b and θ = 0, 1, implements a utility pair (u, v) 
if all of the constraints above are satisfied.

11 To this end, let us note that players’ strategy spaces are effectively finite. Using terminology provided by 
Athey, Bagwell, and Sanchirico (2004), we say that a deviation is an off-schedule deviation (i.e., observable, as 
a deviation, to other players) if it contains a positive investment or positive reciprocity that differs from the equi-
librium value. Such deviations can be avoided by the threat of reverting to autarky. Thus, a deviation is relevant to 
our analysis only if it is an on-schedule deviation (i.e., unobservable, as a deviation, to other players). In such a 
deviation, a player selects zero investment or zero reciprocity, even though the equilibrium strategy calls for a posi-
tive value. A player effectively chooses between the action that is suggested by his equilibrium strategy and an on-
schedule deviation with zero investment or zero reciprocity. Therefore, a player reveals his income or the investment 
outcome truthfully when the PPE calls for positive values of investment and reciprocity. Equivalently, if an income 
level or investment outcome represents the player’s type, then a player’s action space consists of this finite type 
space. We can thus directly apply the dynamic programming techniques of Abreu, Pearce, and Stacchetti (1990).
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We now mention two important benchmarks. First, the Nash equilibrium of the 
static game is autarky: no player invests, and so each player expects a payoff of p. 
In the Nash benchmark, in every period, the players use the Nash equilibrium of 
the stage game. The payoffs for the repeated game are then u = v = ​  p

 _ 1 − β ​, and so 
u + v = ​  2p

 _ 1 − β ​ . The Nash benchmark payoff is used in the IR constraint above, since 
autarky is the worst punishment. Second, given our assumption that qk > 1, the 
first-best benchmark occurs when each player invests all of his income. The players’ 
joint per-period payoff is then 2pqk. Thus, in the first-best benchmark, u + v = ​ 2pqk

 _ 1 − β ​.
We observe that the first-best benchmark could be achieved by patient players, if 

either informational asymmetry were absent. If some player always receives income 
(i.e., p = 1/2), then in any period it is common knowledge among the two players 
as to which player received income. When the players are sufficiently patient, they 
can then support an equilibrium with first-best payoffs, by threatening an infinite 
reversion to the autarky equilibrium of the static game in the event that a player with 
income does not invest all income. Likewise, if an investment is always successful 
(i.e., q = 1), then in any period it is common knowledge among the two players that 
the trustee has received k > 1 and is thus able to reciprocate immediately this entire 
quantity. If the players are sufficiently patient, they can again support an equilibrium 
with first-best payoffs, by threatening an infinite reversion to the autarky equilib-
rium of the static game in the event that the trustee does not immediately reciprocate 
the quantity k > 1.

II.  Highest Symmetric Self-Generating Lines

In this section, we consider PPE that can be characterized in terms of symmetric 
self-generating lines. We begin with the benchmark of a simple favor-exchange rela-
tionship. We then argue that PPE characterized by symmetric self-generating lines 
involve trust and dynamic reciprocity. Finally, we provide an implementation of 
the utility pairs that rest upon a highest symmetric self-generating line, and we also 
characterize the unique features of such an implementation.

A. Preliminaries

Formally, a line (segment) is defined by a closed and convex set of utility pairs, 
(u, v), that sum to the same total; thus, a line is defined by (​u _​, ​

_
 v​) → (​_ u​, ​v _​), where 

u + v ≡ T ∈ ℜ along the line. A self-generating line is a line such that, for any 
utility pair (u, v) on the line, the pair can be implemented using some (x, y, r, s) 
and continuation values, (​u​iθ​, ​v​iθ​, ​u​o​, ​v​o​), where the continuation values are all 
drawn from the given line. Thus, if a pair (u, v) is on a self-generating line, with 
u + v = T, then it is necessary that ​u​o​ + ​v​o​ = T and ​u​iθ​ + ​v​iθ​ = T, for all i and θ. 
A symmetric self-generating line is then a self-generating line for which ​u _​ = ​v _​ and 
​
_
 u​ = ​_ v​. A highest symmetric self-generating line (HSSGL) is a symmetric self-

generating line that achieves the highest value for T = u + v.
Our game allows for a rich set of instruments, and a given utility pair on an 

HSSGL may have multiple implementations. In addition, it is possible that mul-
tiple HSSGLs exist. All such lines must, by definition, achieve the same value for 
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T = u + v; however, the corner utility pairs, (​u _​, ​_ u​) and (​_ u​, ​u _​), may differ across 
HSSGLs, in which case one HSSGL may be wider than another. Accordingly, we 
say that an HSSGL is widest if the associated ​

_
 u​ − ​u _​ is largest.12

Fix an implementation of a utility pair, (u, v), that rests on a self-generating line. 
We define the level of trust in the implementation as x + y, and we say that player 
a (b) exhibits more trust if x > y (x < y). Likewise, we say that player a (b) exhibits 
immediate reciprocity if s > 0 (r > 0). Further, we say that the implementation 
embodies dynamic reciprocity if ​u​ao​ > ​u​bo​ and ​v​bo​ > ​v​ao​. In other words, dynamic 
reciprocity is present if the continuation value for the investor exceeds that of the 
trustee following a period without immediate reciprocity. Finally, we say that player 
a (b) is the favored player if u > v (v > u).

Henceforth, we maintain the assumption that β is sufficiently large, so that

(8)	 β ≥ ​β​  ∗​ ≡ ​  1 __  
1 + p(qk − 1)

 ​.

For any β > 0, this constraint is sure to hold for qk sufficiently large. At the other 
extreme, this constraint can only hold for β near unity when qk is close to unity.

B. Simple Favor-Exchange Relationship

To fix ideas and illustrate the role of (8), we consider a simple favor-exchange 
relationship. In such a relationship, one player begins as the favored player while the 
other player is initially the disfavored player. If the favored player receives income, 
then no transfer is made and the identity of the favored player is unchanged; however, 
if the disfavored player receives income, then that player transfers all income and 
thereby becomes the favored player in the following period. Finally, if neither player 
receives income, then the identity of the favored player again remains unchanged. A 
key feature of the simple favor-exchange relationship is that a player that provides 
a favor (i.e., transfers income) does not do so again—at any level—until after the 
other player provides a favor. Notice also that immediate reciprocity is not utilized.

We may characterize this relationship in terms of a self-generating line, in which 
the players move deterministically between two corner utility pairs, (​u _​, ​_ u​) and 
(​_ u​, ​u _​). The utility pair (​u _​, ​_ u​) is implemented when player b is the favored player. 
In this case, we may understand that player a owes the favor. Formally, the players 
implement this utility pair as follows: (i) if player a receives income, then player a 
transfers all income (x = 1); (ii) if player b receives income, then no transfer ( y = 0) 
is required; and (iii) if neither player receives income, then no transfer is feasible. 
In case (i), player a’s favor is paid, and it is then player b’s turn to provide a favor. 
The players thus implement the other corner utility pair, (​_ u​, ​u _​), in the next period. 
In cases (ii) and (iii), player a’s favor is not yet paid, and the players implement 
(​u _​, ​_ u​) again in the next period. The utility pair (​_ u​, ​u _​) is implemented in similar fash-
ion, except here player a is favored.

12 Given a symmetric self-generating line, it is straightforward to use the techniques of Abreu, Pearce, and 
Stacchetti (1990) and establish the existence of a widest self-generating line that contains the given line.
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We now provide a formal characterization of a simple favor-exchange relationship.

Proposition 1: There exists a symmetric self-generating line that specifies a sim-
ple favor-exchange relationship, in which x + y = 1 and T = p[1 + qk]/(1 − β). 
In particular, let

	​ u _​ = ​ 
​p​  2​ β(1 + qk)

  __   
(1 − β)(1 − β + 2 β  p)

 ​ ,

	​
_
 u​ = ​ 

p(1 + qk)(1 − β + β p)
   __   

(1 − β)(1 − β + 2 β  p)
 ​ .

The corner utility pair (​u _​, ​
_
 u​) can be implemented using the following specification: 

r = s = 0, ​u​ao​ = ​u​a1​ = ​_ u​, ​u​bo​ = ​u​b1​ = ​u​o​ = ​u _​, ​v​ao​ = ​v​a1​ = ​u _​, ​v​bo​ = ​v​b1​ = ​v​o​ = ​_ u​, 
and x = 1 > 0 = y. The corner utility pair (​_ u​, ​u _​) can be implemented symmetri-
cally, by interchanging x with y and u with v in the above specification.

A key step in the proof of Proposition 1 is to show that the disfavored player is 
willing to transfer all income. In particular, to implement (​u _​, ​_ u​), we require that (2) 
is satisfied so that player a is willing to transfer all income (x = 1). For the proposed 
specification, we find that (2) holds if ​

_
 u​ − ​u _​ ≥ 1/β, where ​u _​ and ​

_
 u​ are defined in 

Proposition 1. Simple calculations confirm that this inequality holds if and only if 
β ≥ ​β​  ∗​. Thus, we may understand our maintained assumption (8) as ensuring that 
players have sufficient patience to implement a simple favor-exchange relationship.

The simple favor-exchange relationship generates payoffs that exceed the autarkic 
payoffs that arise under repeated play of the Nash equilibrium of the stage game. Thus, 
this intuitive relationship can be interpreted as efficiency enhancing. An important limi-
tation of this relationship, however, is that the benefit of investment is not exploited 
when the same player receives income in successive periods. We thus next characterize 
the more sophisticated favor-exchange relationship that implements an HSSGL.

C. Implementation of HSSGL

To characterize behavior along an HSSGL, we must first analyze the general 
features of symmetric self-generating lines. In the Appendix, we provide all of 
the proofs and an extensive discussion of these features. We show there that the 
same level of trust is used when implementing any utility pair along a given self-
generating line, where higher self-generating lines are associated with higher levels 
of trust. We also show that dynamic reciprocity is necessary for the implementation 
of any utility pair along a symmetric self-generating line, where a greater level of 
trust is associated with a larger degree of dynamic reciprocity (i.e., a larger value 
for ​u​ao​ − ​u​bo​). We show as well that the implementation of the corner utility pair,  
(​u _​, ​

_
 u​), on a given HSSGL requires full trust (i.e., x = 1) by player a and an upper 

bound on the investment level by player b ​( specifically, y ≤ ​ β − ​β​  ∗​
 _ β + ​β​  ∗​ ​ )​.13 Intuitively, 

13 As discussed in the Appendix, an implication is that first-best total payoffs cannot be achieved using a sym-
metric self-generating line.

08_MIC20100093_52.indd   223 4/16/13   11:28 AM



224	 American Economic Journal: Microeconomics� MAY 2013

the disfavored player is willing to exhibit full trust only if the future reward of 
becoming the favored player is sufficiently large, which in turn implies an upper 
bound for the investment level required of the favored player. These results imply 
an upper bound for the level of trust that can be supported in a symmetric self-
generating line; thus, if we can implement a self-generating line that achieves this 
bound ​( i.e., for which x + y = ​  2β

 _ β + ​β​  ∗​ ​ )​, then we can be assured that we have con-
structed an HSSGL.

As we show in the Appendix, we may implement an HSSGL using a public-
randomization device. Under this approach, the key task is to implement the corner 
utility pair, (​u _​, ​_ u​). The other corner utility pair, (​_ u​, ​u _​), can then be implemented in an 
analogous way, and all intermediate utility pairs can be realized, in expectation, by 
using a public-randomization device that induces a lottery over the two corner utility 
pairs.14 To implement (​u _​, ​_ u​), we specify that player a transfers all income if he is 
the investor and that player b transfers less than all income ​( specifically, y = ​ β − ​β​  ∗​

 _ β + ​β​  ∗​ ​ )​ 
if he is the investor. If player a is selected as the investor and exhibits full trust, then 
the opposite corner utility pair, (​_ u​, ​u _​), is implemented in the following period. If 
instead player b is selected as the investor and makes the required (partial) transfer 
of income, then the corner utility pair, (​u _​, ​

_
 u​), is implemented again in the following 

period. Finally, if neither player reports income, then an intermediate utility pair is 
induced in expectation in the following period, where the intermediate utility pair 
favors player b but to a smaller extent than did the initial corner utility pair.

The implementation has two interesting features. First, the extent to which a 
player is favored diminishes in expectation when a “neutral” state (i.e., a state in 
which no player has income) is encountered. Intuitively, this feature ensures that a 
player is willing to transfer some income even when that player provided the most 
recent favor. For example, by transferring some income ​( namely, y = ​ β − ​β​   ∗​

 _ β + ​β​   ∗​ ​ )​ in  
this situation, player b ensures that the corner utility pair (​u _​, ​_ u​) is implemented 
again in the following period rather than an intermediate utility pair in which player 
b is favored to a smaller extent. Second, the implementation does not require the use 
of immediate reciprocity.

Building on these findings, we now consider the implementation of an HSSGL 
when a public-randomization device is unavailable. The intermediate utility pair 
that follows a neutral state must then be directly implemented, which leads to new 
predictions about the evolution of cooperative relationships when successive neutral 
states are encountered.

PROPOSITION 2: There exists an HSSGL that can be implemented with-
out a public-randomization device and in which x + y = 2β/(β + ​β​  ∗​) and 

T = p​[ 2 + ​  2β _ β + ​β​  ∗​ ​ (qk − 1) ]​/(1 − β) In particular, let

(9)	​ u _​ =   ​ 
p + ​ β − ​β​  ∗​ _ β + ​β​  ∗​ ​ ​ 

1 _ 
​β​  ∗​ ​  __ 

1 − β
  ​, ​

_
 u​  = ​ u _​ + ​  2 _ 

β + ​β​  ∗​
 ​,

14 Athey and Bagwell (2001) assume a public-randomization device and use a related approach.
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and consider any utility pair (u, v) along the line connecting (​u _​, ​_ u​) and (​_ u​, ​u _​). This  
pair can be implemented using the following specifications: r = s = 0, ​u​ao​ = ​u​a1​  
= ​u _​ + (x + y)/β = ​_ u​, ​u​bo​ = ​u​b1​ = ​u _​, ​v​ao​ = ​v​a1​ = ​u _​, ​v​bo​ = ​v​b1​ = ​_ u​, and 

(10)	 x = β  ​β​  ∗​​[ ​ v − p
 _ 

β
  ​  −  ​u _​ ]​,

(11)	 y = β  ​β​  ∗​​[ ​ u − p
 _ 

β
  ​  −  ​u _​ ]​,

(12)	​ u​o​ =  ​β​  ∗​​[ ​ u − p
 _ 

β
  ​  +  ​ 

​u _​(1 − β  ∗)
 _ 

β  ∗
 ​  ]​,

(13)	​ v​o​ =  ​β​  ∗​​[ ​ v − p
 _ 

β
  ​  +  ​ 

​u _​(1 − β  ∗)
 _ 

β  ∗
 ​  ]​.

In the implementation featured in Proposition 2, any utility pair (u, v) on the 
line that connects (​u _​, ​_ u​) and (​_ u​, ​u _​) as defined in (9) can be implemented using only 
continuation values drawn from that line. For example, at the start of the game, the 
players might seek to implement a symmetric utility pair corresponding to the mid-
point of this line. Let (​̃ u ​, ​ u ​) denote the midpoint:

(14)	​  u ​ ≡  ​ 
​u _​ + ​_ u​

 _ 
2
 ​   =  ​ 

p + ​ β(1 − ​β​  ∗​)
 _ β + ​β​  ∗​  ​ ​ 1 _ ​β​  ∗​ ​  __  

1 − β
 ​ .

Notice from (10) and (11) that x = y when u = v; thus, since x + y = 2β/(β + ​β​  ∗​), we  
have that x = y = β/(β + ​β​  ∗​) in the first period. Suppose, for example, that player b  
receives income in the first period. The implementation then calls for player b to exhibit 
trust and send y = β/(β + ​β​  ∗​) to player a. Play then moves to the second period, at 
which point the players seek to implement the corner utility pair (​u _​ , ​_ u​). This asym-
metric pair rewards player b for reporting income and showing trust toward player a 
in the first period. Player b thus becomes the favored player, since v = ​_ u​ > ​u _​ = u.

To implement (​u _​, ​_ u​) in the second period, the players use the corresponding val-
ues for x and y that are given by (10) and (11). When (u, v) = (​u _​, ​_ u​), it is direct 
to confirm that these values are given by x = 1 and y = (β − ​β​  ∗​)/(β + ​β​  ∗​), 
indicating that player a now exhibits more trust than player b.15 Thus, if player a 
receives income in the second period, then player a sends x = 1 to player b and 

15 As suggested above, this implementation is also used for the corner utility pair of the same HSSGL when 
players have access to a public-randomization device. See also Proposition 9 in the Appendix.
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thereby becomes the favored player in the third period, at which point the opposite 
corner utility pair (​_ u​, ​u _​) is implemented. If instead player b again receives income 
in the second period, then player b sends y = (β − ​β​  ∗​)/(β + ​β​  ∗​) to player a. By 
transferring some income in this way, player b ensures that the utility pair (​u _​, ​_ u​) is 
implemented again in the third period.

The remaining possibility is that no income is reported in the second period. Going 
into the third period, the players then seek to implement the utility pair (​u​o​, ​v​o​),  
as given by (12) and (13) when (u, v) = (​u _​, ​_ u​). As Proposition 2 shows, this 
pair may be implemented deterministically (i.e., without a public-randomization 
device). To determine the implementation for the pair (u, v) = (​u​o​, ​v​o​), we again 
refer to (10)–(13). At this point, it is important to use the notation with care. Given 
(u, v) = (​u​o​, ​v​o​), we may think of the two left-hand side variables determined by 
(12) and (13) as a pair (​​ u ​​o​, ​​ v ​​o​) that represents the utilities that the players seek to 
implement at the start of the fourth period, in the event that no income is reported in 
the third period. In this general manner, for any given path of income realizations for 
the infinite game, we may refer to (10)–(13) and determine the path of trust (i.e., the 
amounts of income that are given from one player to another) for the infinite game.

As the discussion above suggests, one interesting possibility is that the players 
report no income over successive periods. Continuing with the example above, sup-
pose player b sends income to player a in the first period, so that player b is the 
favored player in the second period, and suppose neither player reports income in 
the second, third, etc., periods. Does player b remain the favored player, until a 
period finally arrives in which player a has income? Is the size of the favor that 
player a owes reduced in each successive period that no income is reported?

These questions are readily answered using (10)–(13). To this end, we may use 
(10) and (11) to find that

(15)	 x − y = ​β  ​∗​[v − u].

Equation (15) captures a basic relationship between the utility pair that the players 
seek to implement and the extent to which each player exhibits trust. In particular, if 
the players seek to implement a utility pair in which player b is favored (i.e., in which 
v > u), then player a must exhibit more trust (i.e., x > y). Next, given the expressions 
for ​u _​ and ​̃ u ​ presented in (9) and (14), respectively, we may use (12) to derive that

(16)	​ u​o​ − ​ u ​   =   ​ 
​β​  ∗​
 _ 

β
 ​ [u − ​ u ​].

Of course, given that 2​̃ u ​ =  ​u​o​ + ​v​o​ = u + v = ​u _​ + ​_ u​, we may equivalently restate 
(16) as

(17)	​  u ​ − ​v​o​ = ​ 
​β  ​∗​
 _ 

β
 ​ [​̃ u ​ − v].

Equations (16) and (17) indicate key relationships between the utility pair (u, v) 
that the players seek to implement in a given period, and the utility pair (​u​o​  ​v​o​) that 
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they seek to implement in the next period in the event that no income is reported in 
the given period.

Consider first the possibility that β = ​β​ ∗​. Using (16) and (17), we see then that 
(u, v) = (​u​o​, ​v​o​). In this case, when the players seek to implement (u, v) and neither 
player reports income, then the players again seek to implement (u, v) = (​u​o​, ​v​o​) at 
the beginning of the next period. As (15) confirms, the trust levels that players are 
expected to exhibit are then unchanged. Put differently, the favor that is owed does 
not diminish as successive no-income states are encountered. Consider next the case 
in which β > ​β​ ∗​. If u = v = ​ u ​, then once again the favor owed does not diminish 
as successive no-income states are experienced. In this case, if no income is reported 
in the given period, then the players again seek to implement the same utility pair, 
(u, v) = (​u​o​, ​v​o​) = (​̃ u ​, ​ u ​), in the next period. In particular, x and y both remain at 
the symmetric level, β/(β + ​β​ ∗​).

The final possibility is that β > ​β​ ∗​ and (u, v) ≠ (​̃ u ​, ​ u ​). In this case, patient play-
ers seek to implement an asymmetric utility pair. For simplicity, let us focus on the 
situation in which player b is favored: v > ​ u ​ > u. We thus have from (15) that x > y. 
Now suppose that neither player reports income in the current period. Referring to 
(16) and (17), we see then that the players proceed to the next period and seek to 
implement (​u​o​, ​v​o​), where ​u​o​ < ​ u ​ < ​v​o​. Given ​β ​∗​/β < 1, we may further observe 
that u < ​u​o​ and ​v​o​ < v. Thus, when β > ​β​ ∗​ and the players seek to implement (u, v) 
such that v > ​ u ​ > u, if no income is reported, then in the next period the players 
seek to implement (​u​o​, ​v​o​) such that u < ​u​o​ < ​ u ​ < ​v​o​ < v. Applying (15), we see 
that in the next period player a continues to exhibit more trust than does player b; 
however, the extent of the trust differential is reduced (i.e., x remains larger than 
y, but x − y is lower). Recalling the two questions posed above, we thus conclude 
that player b remains the favored player until a period occurs in which player a has 
income. But the size of the favor that player a owes is reduced in each successive 
period that no income is reported.

Thus, when player b is the favored player and a period is experienced in which 
neither player reports income, player a acknowledges that a favor is still owed but 
insists that the favor is now smaller in size. We may imagine player a exclaim-
ing, “Yeah, but what have you done for me lately?” The key intuition is associ-
ated with the I​C​ y​ b​ constraint. As (3) indicates, when the players are attempting to 
implement a utility pair that favors player b, they must be sure to give player b 
the incentive to report income (and thus send y to player a). To accomplish this, 
they use a utility pair (​u​o​, ​v​o​) that penalizes player b somewhat when no income 
is reported.

We may summarize the discussion above as follows:

Corollary 1. Consider the implementation of an HSSGL that is specified in 
Proposition 2. If β = ​β​  ∗​ or (u, v) = (​̃ u ​, ​ u ​), then (​u​o​, ​v​o​) = (​̃ u ​, ​ u ​) and so the values 
for x and y are not altered following a period in which no income is reported. If β > ​
β​  ∗​ and v > ​ u ​ > u, then u < ​u​o​ < ​ u ​ < ​v​o​ < v and so x − y remains positive but 
is reduced following a period in which no income is reported. Likewise, if β > ​β​  ∗​ 
and u > ​ u ​ > v, then v < ​v​o​ < ​ u ​ < ​u​o​ < u and so y − x remains positive but is 
reduced following a period in which no income is reported.
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Finally, it is interesting to compare the total payoff achieved in the HSSGL 
of Proposition 2 with that achieved in the simple favor-exchange relationship of 
Proposition 1. If β > ​β​  ∗​, then the level of trust, and thus the total payoff, is strictly 
higher in an HSSGL than in the simple favor-exchange relationship. Intuitively, 
when β > ​β​  ∗​, the featured HSSGL offers a strictly higher payoff, because a player 
transfers some income even when that player provided the most recent favor. As 
explained above, an incentive for such behavior is provided, since the size of a favor 
owed deteriorates in size following the experience of a neutral state.16

D. Uniqueness

The implementation of an HSSGL is not unique. As Proposition 1 establishes, the 
implementation of an HSSGL can be achieved without the use of immediate reciproc-
ity (i.e., r = s = 0 in this implementation). As we show in the Appendix, however, 
alternative implementations of an HSSGL exist in which immediate reciprocity is 
used. In addition, and as we discuss above and confirm in the Appendix, alternative 
implementations of an HSSGL may be constructed that utilize a public-randomization 
device. Despite these findings, we next establish that, for any utility pair on the widest 
HSSGL, every implementation is characterized by the same values for x, y, ​u​o​ and ​v​o​.

To present this result, we define a notion of uniqueness. Fix any (u, v) on the wid-
est HSSGL. Let {x, y, r, s, ​u​iθ​, ​v​iθ​, ​u​o​,  ​v​o​} and {​x  ′​, ​y′​, ​r′​, ​s′​, ​u​ iθ​ ′ ​, ​v​ iθ​ ′ ​, ​u​ o​ ′ ​, ​v​ o​ ′ ​} be two 
implementations of (u, v), where each implementation uses only continuation val-
ues that are drawn from an HSSGL. We then say that (u, v) is implemented uniquely 
(up to {r, s, ​u​iθ​, ​v​iθ​}) if, for any such two implementations, we have x = ​x′​, y = ​y′​, ​
u​o​ = ​u​ o​ ′ ​ and ​v​o​ = ​v​ o​ ′ ​. Otherwise, we say that there exists multiple implementations 
for (u, v). Thus, we define uniqueness in terms of the trust relationship (i.e., the val-
ues of x and y) and the manner in which utility pairs evolve following neutral states 
(i.e., the values of ​u​o​ and ​v​o​). Then:

Proposition 3: Every (u, v) on the widest HSSGL is implemented uniquely.

With this proposition, we have a uniqueness result for our prediction that the size of 
the favor that is owed diminishes in expectation when a neutral state is encountered.

This concludes our characterization of HSSGLs. In the following sections, we 
compare the total payoff achieved along the HSSGL with alternative benchmarks.

III.  Strongly Symmetric Equilibria

In the analysis above, we allow that players can promise future favors through 
asymmetric continuation values, but we do not allow that players may threaten a 
symmetric punishment whereby u = v is lowered following certain public outcomes. 

16 In our companion paper (Abdulkadiro​     g​lu and Bagwell 2012), we consider equilibria that correspond to a 
“chips mechanism” and identify a range of intermediate discount factors for which the optimal equilibrium in this 
class corresponds to a simple favor-exchange relationship (i.e., a chips mechanism with a single chip). For such dis-
count factors, it then follows that an HSSGL offers a strictly higher total payoff than the optimal chips mechanism.
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We now consider strongly symmetric equilibria (SSE) and thus adopt the opposite 
emphasis: players’ utilities are no longer allowed to move asymmetrically along a 
negatively sloped line, but players’ utilities are now allowed to move symmetrically 
along the 45-degree line. We characterize optimal SSE and, in particular, identify 
specific circumstances under which SSE generate a symmetric payoff for the game 
that exceeds that obtained on an HSSGL.

A. Characterization of Optimal SSE

We proceed now to characterize optimal SSE. To begin, we follow Abreu, Pearce, 
and Stacchetti (1990) and define an operator ​B​ss​ which yields the set of strongly 
symmetric PPE values, ​ψ​ s​ ∗​, as the largest self-generating set. Denoting the autarky 
payoff for a player as ​u​aut​ = ​  p

 _ 
1 − β ​, we may define this operator as follows:

For any ​ψ​s​ = [​u​aut​, u] consider the following mapping: ​B​ss​(​ψ​s​) = {v : ∃ x ∈ [0, 1], 
r ∈ [0, kx], ​v​o​, ​v​10​, ​v​11​ ∈ ​ψ​s​ such that

(18)	 I​C​x​ : 1 − x + q(r + β ​v​11​) + (1 − q)β ​v​10​ ≥ 1 + β ​v​o​

(19)	 I​C​θ​ : kx − r + β ​v​11​ ≥ kx + β ​v​10​

(20)	 PK : v = p[1 − x + q(r + β  ​v​11​) + (1 − q)β  ​v​10​]

	 + p[q(kx − r + β​v​11​) + (1 − q)β​v​10​] + (1 − 2p)β​v​o​}.

Let ​ψ​ s​ ∗​ = [​u​aut​, ​u​ max ​] be the maximal fixed point of ​B​ss​. That is, if [​u​l​, ​u​h​] is a fixed 
point of ​B​ss​, then [​u​l​, ​u​h​] ⊂ [​u​aut​, ​u​ max ​].

Observe that this operator requires symmetry across players, with u denoting 
the payoff enjoyed by each player, x denoting the investment that a player makes 
in the current period if that player receives income, r denoting the reciprocity that 
the trustee then offers in the current period if the investment is successful, and ​v​o​, ​
v​11​, and ​v​10​ denoting the continuation values that each player receives in the future 
if the current period has no investor, a successful investment and an unsuccessful 
investment, respectively. For a given ​ψ​s​ = [​u​aut​, u], we thus say that {x, r, ​v​10​, ​v​11​, ​v​o​}  
implements v if all of the constraints above are satisfied.

We refer to a pair (q, p) as an information structure. Consider the set 
I = {(q, p) : q ∈ (​ 1 _ k ​, 1], p ∈ [0, ​ 1 _ 2 ​)}, which is the set of all feasible informa-
tion structures. The characterization of optimal SSE reveals that behavior differs 
depending upon which of three different information-structure regions is in place. 
The respective regions are illustrated in Figure 1. We now describe the behavior that 
emerges in each region. The proofs are contained in the Appendix.

A.1. Region ​I​1​: Low q and not so high p.

Let ​q​∗​ = ​ k  +  ​√
______

 ​k​2​  +  8k ​
 _ 4k  ​ ∈ ​( ​ 1 _ 2 ​, 1 )​. Consider ​I​1​ = {(q,  p) ∈ I : q ≤ ​q​∗​ and p ≤ ​  1 _ qk+1 ​}. 

In this region, we find that ​u​ max ​ = ​u​aut​. Thus, under this information structure, 
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the players are unable to cooperate using SSE. Intuitively, given that p is small, 
no-investor states are common. Hence, if players attempt to provide incentives for 
trust by using the threat of a symmetric punishment, then this punishment often 
would be experienced on the equilibrium path. Further, with q being small as well, 
the value of future cooperation is not huge. The players are thus unable to enforce 
a strongly symmetric equilibrium in which trust is exhibited. Clearly, if β is suffi-
ciently high that an HSSGL exists, then the players earn a higher total payoff in an 
HSSGL than in the optimal (autarkic) SSE.

A.2. Region ​I​2​ : Not so high q but high p.

Consider now ​I​2​ = ​{ (q, p) ∈ I : p ≥ ​ 2q−1
 _ 2q  ​ and p > ​  1 _ qk + 1 ​ }​. For β > ​  1 _ 

p(qk + 1) ​, 

we find that ​u​max​ = ​u​aut​ + ​ p(qk +1 ) − 1
 _ 

1 − β  ​. The following implements the optimal SSE 
in this case: x = 1, ​v​10​ = ​v​11​ = ​u​max ​, r = 0 and ​v​o​ = ​u​max ​ − ​ 1 _ β ​ > ​u​aut​.

We observe that implementation of ​u​max ​ is achieved without use of immediate 
reciprocity (i.e., r = 0), and that players incur a moderate punishment when the 
neutral (no-investor) state is experienced (i.e., ​u​max ​ > ​v​o​ > ​u​aut​). We also find that 
li​m ​p→1/2​ ​u​max ​ = li​m ​p→1/2​ ​u​eff​  , where ​u​eff​ = ​  pqk

 _ 
1 − β ​ is the payoff that a player enjoys in 

the first-best benchmark. This implies that, when p is sufficiently close to ​ 1 _ 2 ​, patient 
players achieve a higher total payoff in the optimal SSE than they do on an HSSGL. 
Intuitively, when p is close to ​ 1 _ 2 ​, the neutral state is rare; thus, the players can use the 
threat of a symmetric punishment in this state to provide incentives for trust while 
only rarely experiencing the punishment on the equilibrium path.

p

q

1

0

1/2

I 2

p  = 1/(qk + 1)

p = (2q−1)/2q

q*1

I 1

I 3

Figure 1. The Partition for the Information Structure
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A.3. Region ​I​3​ : High q but not so high p.

Finally, consider ​I​3​ = ​{ (q, p) ∈ I : q > ​q​∗​ and p < ​ 2q − 1
 _ 2q  ​ }​. Define ​  β​  

= ​  1 __  
1 + p(2k​q​ 2​ − qk − 1)

 ​. Then ​  β​ < 1 if and only if q > ​q​∗​. For β ≥ ​  β​, we find 

that ​u​max​ = ​u​aut​ + ​  λ _ 
1 − β ​, where λ = ​ p(2k​q​ 2​ − qk − 1)

  __ 2q − 1  ​ ≥ 0 since q ≥ ​q​∗​. The 
following implements the optimal SSE in this case: x = 1, ​v​o​ = ​v​11​ = ​u​max ​, 
​v​10​ = ​u​max ​ − ​  1 _ β(2q − 1) ​ ≥ ​u​aut​ and r = ​  1 _ 2q − 1 ​ > 0.

We observe that implementation of ​u​max ​ is achieved without punishment in the 
neutral (no-investor) states (i.e., ​v​o​ = ​u​max ​). Instead, players punish one another 
when there is no immediate reciprocity (i.e., ​v​10​ < ​u​max ​). Thus, in this implementa-
tion, immediate reciprocity plays an important role (i.e., r > 0). We also find that 
li​m ​q→1​ ​u​max ​ = li​m ​q→1​ ​u​eff​  . This implies that, when q is close to 1, patient players 
achieve a higher total payoff in the optimal SSE than they do on an HSSGL. 
Intuitively, when q is close to 1, investment is almost always successful; thus, the 
players can use the threat of a symmetric punishment when immediate reciprocity is 
not offered to provide incentives for trust while only rarely experiencing the punish-
ment on the equilibrium path.

B. Comparisons

It is interesting to compare regions ​I​2​ and ​I​3​. Start with (q, p) ∈ ​I​2​, where immedi-
ate reciprocity plays no role. As we increase q, we reach ​I​3​, where immediate reciproc-
ity begins playing a role. Also, as we move from ​I​2​ to ​I​3​, the punishment phase shifts 
from following a neutral (no-investor) state to following the state in which trust is 
exhibited but immediate reciprocity is not offered. As suggested above, the intuition is 
that players provide incentives most efficiently by emphasizing the information asym-
metry for which the “bad” outcome (no investor, unsuccessful investment) is unlikely. 
Further, it is precisely in those circumstances where a bad outcome is very unlikely 
that the optimal SSE offers a total payoff that exceeds that in an HSSGL.

We have not specified whether a punishment-phase utility is itself implemented, 
or if it is achieved in expectation via a public-randomization device that induces 
a lottery over ​u​max ​ and ​u​aut​. The latter interpretation is immediate and requires no 
further analysis. Under this interpretation, any punishment phase entails the risk of 
permanent autarky. Similarly, it is possible to implement a punishment-phase utility 
with a lottery in which the players risk temporary autarky, whereby in each period 
the players leave autarky (return to ​u​max ​) with a constant hazard rate. To imple-
ment in expectation a given punishment-phase utility, the lottery must place a higher 
probability on going to autarky when the autarky relationship is temporary.

For future reference, we now collect our findings for payoffs:

Proposition 4: Let ​u​max ​ represent the utility achieved in the optimal SSE. 
(i) For (q, p) ∈ ​I​1​, ​u​max ​ = ​u​aut​ . (ii) For (q, p) ∈ ​I​2​, if β ≥ ​  1 _ 

p(qk + 1) ​, then 

​u​max​ = ​u​aut​ + ​ p(qk + 1) − 1
 _ 

1 − β  ​ . (iii) For (q, p) ∈ ​I​3​, if β ≥ ​  β​, then ​u​max​ = ​u​aut​ + ​  λ _ 
1 − β ​ 

where λ = ​ p(2k​q​ 2​ − qk − 1)
  __ 2q − 1  ​ ≥ 0.
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Thus, throughout region ​I​1​, the optimal SSE offers a strictly lower payoff than does 
an HSSGL. For β sufficiently high, however, the optimal SSE offers a strictly higher 
payoff than does an HSSGL in subsets of region ​I​2​ and ​I​3​ within which p is suffi-
ciently close to ​ 1 _ 2 ​ and q is sufficiently close to 1, respectively.

As Proposition 4 confirms, our analysis of the optimal SSE in regions ​I​2​ and ​
I​3​ imposes additional restrictions on β beyond our maintained assumption that 
β ≥ ​β   ​∗​. The restrictions are important. For example, consider the subset of region ​

I​2​ in which q ≤ ​ 1 _ 2 ​ and β < ​  1 _ 
p(1 + qk) ​. Letting ​p​s​ ≡ ​  1 _ β(1 + qk) ​, we may state the latter 

inequality as ​p​s​ > p. We observe that ​p​s​ < ​ 1 _ 2 ​ when q = 1 if and only if β > ​  2 _ 1 + k ​. 

But simple calculations confirm that ​β​   ∗​ > ​  2 _ 1 + k ​. Given β ≥ ​β​  ∗​, we thus conclude 
that ​p​s​ < ​ 1 _ 2 ​ when q = 1. As Figure 2 illustrates, part (ii) of Proposition 4 refers to 
that portion of region ​I​2​ that lies above the ​p​s​ = p curve. In contrast, our present 
interest is in the subset of region ​I​2​ that rests below the ​p​s​ = p curve and in which 
q ≤ ​ 1 _ 2 ​.

We now provide our main finding for this subset.

Proposition 5: Let ​u​max ​ represent the utility achieved in the optimal SSE. For 
(q, p) ∈ ​I​2​, if q ≤ ​ 1 _ 2 ​ and β < ​  1 _ 

p(1 + qk) ​ , then ​u​max ​ = ​u​aut​.

Thus, in this subset of region ​I​2​, the optimal SSE corresponds to autarky and there-
fore offers a strictly lower payoff than does an HSSGL.

IV.  Hybrid Equilibria

Our discussion above characterizes HSSGLs and optimal SSE. With these con-
structions established, we are now able to consider the possibility of hybrid equi-
libria. In such equilibria, players begin the game by exhibiting a high level of trust 
in period one. If some player receives and transfers income in the first period, then 
the players thereafter exchange favors by implementing an HSSGL, with that player 
being the favored player in the second period. Alternatively, if no player receives 
income in the first period, then the players may revert to a symmetric punishment in 
the second period. In broad terms, such equilibria are thus characterized by an initial 
“honeymoon” period, after which the players either continue with a favor-exchange 
relationship or experience a breakdown. In this section, we characterize the optimal 
hybrid equilibria and compare the associated payoffs with those achieved in HSSGLs 
and optimal SSE.

A. Characterization of Optimal Hybrid Equilibria

Recall the definition of implementation in Section I. For a given 
ψ = [​u​aut​  , u], we now say that a pair {x, ​u​o​} implements u in a hybrid equilibrium if 
{x, y, r, s, ​u​iθ​, ​v​iθ​, ​u​o​, ​v​o​}, for i = a, b and θ = 0, 1, implements the utility pair {u, u} 
when x = y, r = s = 0, ​u​a1​ = ​u​ao​ = ​v​b1​ = ​v​bo​ = ​_ u​, ​u​b1​ = ​u​bo​ = ​v​a1​ = ​v​ao​ = ​u _​ 
and ​u​o​ = ​v​o​ ∈ [​u​aut​, u], where ​u _​ and ​

_
 u​ are defined by (9). In an optimal hybrid equi-

librium, x and ​u​o​ are chosen to deliver the maximal value for u. Thus, in a hybrid 
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equilibrium, the players exhibit equal trust in the first period (i.e., x = y). If some 
player receives income and transfers the amount x, then in period two the players 
implement an HSSGL. At this point, the player that made the period-one transfer is 
favored and thus enjoys a continuation value of ​

_
 u​ while the other player’s continua-

tion value is ​u _​. If instead neither player received income in period one, then in period 
two the players implement a symmetric utility pair, (​u​o​, ​u​o​).

Our next result states that an optimal hybrid equilibrium exists.

Proposition 6: There exists an optimal hybrid equilibrium. If 1 < p(1 + qk), 
then x = 1 and ​u​o​ = ​_ u​ − 1/β implement the optimal hybrid equilibrium, and the 
corresponding equilibrium utility is given by

(21)	 u = [ p(qk + 1) − 1] + p + β(1 − p)​_ u​ + β p ​u _​.

If 1 > p(1 + qk), then x = ​  β _ β + β  ∗ ​  and ​u​o​ = ​ u ​ implement the optimal hybrid equi-

librium, and the corresponding equilibrium utility is given by ​̃ u ​. If 1 = p(1 + qk), 
in all implementations of optimal hybrid equilibria, the corresponding equilibrium 
utility is given by ​̃ u ​.

To see the intuition, suppose that 1 < p(1 + qk). If we increase the punishment 
that follows an event in which no income is reported (i.e., if ​u​o​ = ​v​o​ is lowered), 
then the players can be motivated to transfer a greater income (i.e., x = y can be 
raised). The benefit of an increase in the size of the transfer is measured by qk − 1 
and happens with probability p. On the other hand, the players then suffer a greater 
punishment when, in fact, neither player has income. This cost is experienced with 
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probability 1 − 2p. Thus, the net gain is positive if 1 − 2p < p(qk − 1), or equiva-
lently, if 1 < p(qk + 1).

B. Comparisons

We next compare the payoffs in optimal hybrid equilibria with those in HSSGLs 
and optimal SSE. As above, we use ​u​max ​ to represent the payoff that a player expects 
at the beginning of the game, when players use an optimal SSE. Similarly, if play-
ers begin the game by implementing the symmetric utility pair on an HSSGL, then ​
˜ u ​ ≡ (​_ u​ + ​u _​)/2 represents a player’s payoff. Finally, if players implement an opti-
mal hybrid equilibrium, we let ​u​H​ represent the corresponding payoff that a player 
expects at the beginning of the game.

We first compare optimal hybrid equilibria and HSSGLs. Using Proposition 6, we 
have the following corollary:

Corollary 2: If 1 < p(1 + qk), then the optimal hybrid equilibrium offers a 
strictly higher total payoff than does any HSSGL, and thus ​u​H​ > ​ u ​. If 1 ≥ p(1 + qk), 
then all optimal hybrid equilibria offer the same total payoff as does any HSSGL, 
and thus ​u​H​ = ​ u ​.

This finding follows directly from Proposition 6. When 1 < p(1 + qk), we may 
use (21), (14), and (9) to compute the explicit expression for the payoff difference:

	​ u​H​ − ​ u ​  = ​{ [ p(qk + 1) − 1] + p + β(1 − p)​_ u​ + β p ​u _​ }​ − ​{ u _​ + ​  1 _ 
β + ​β​  ∗​

 ​ }

	 = ​ 
[ p(1 + qk) − 1]​β  ​∗​

  __  
β + ​β​  ∗​

 ​  > 0.

As discussed above, the key point is that, when 1 < p(1 + qk), players can benefit 
by using the threat of a symmetric punishment to enforce an initial “honeymoon” 
period in which the level of trust is very high. Provided that some player receives 
and transfers income in the first period, the players then use a favor-exchange rela-
tionship (i.e., move along an HSSGL) in all future periods.

If 1 < p(qk + 1), we may easily verify that ​
_
 u​ > ​u​H​ > ​ u ​ > ​u _​. Thus, as Corollary 2 

indicates, when a honeymoon period is included, the players earn a higher symmet-
ric payoff at the start of the game (​u​H​ > ​ u ​). One perspective on this result is that the 
first period is a special period, since players are not encumbered by obligations that 
are derived from past favors; hence, they may set x = y = 1 and exhibit full trust in 
the first period. We observe as well that the player that made a period-one transfer 
emerges as the favored player in period two and in fact then enjoys a higher continu-
ation value than at the start of the game (  ​_ u​ > ​u​H​). Correspondingly, the player that 
enters period two as the disfavored player experiences a reduced continuation value 
(  ​u _​ < ​u​H​).

We next compare optimal hybrid equilibria and optimal SSE. We focus on region ​
I​2​, where 1 < p(1 + qk). We provide two results. First, recall from Proposition 5 

08_MIC20100093_52.indd   234 4/16/13   11:28 AM



Vol. 5 No. 2� 235ABDULKADIRO​ ˘ 
 

 G​LU and bagwell: TRUST, RECIPROCITY, AND FAVORS

that the optimal SSE generates the autarky payoff, ​u​aut​, in the subset of region ​I​2​ in 
which q ≤ ​ 1 _ 2 ​ and β < ​  1 _ 

p(1 + qk) ​. In Figure 2, members of this subset satisfy q ≤ ​ 1 _ 2 ​ 
and rest below the ​p​s​ = p curve, where ​p​s​ ≡ ​  1 _ β(1 + qk) ​. Using Proposition 5 and 
Corollary 2, we may thus conclude that:

Corollary 3: If q ≤ ​ 1 _ 2 ​ and 1 < p(1 + qk) < 1/β, then the optimal hybrid 
equilibrium offers a strictly higher total payoff than does the optimal SSE and any 
HSSGL. In fact, under these conditions, ​u​H​ > ​ u ​ > ​u​ max ​ = ​u​aut​.

We have thus identified a subset of region ​I​2​ in which the optimal hybrid equilibrium 
offers a strict improvement over HSSGLs and optimal SSE.

To develop our second result, we recall Proposition 4. As indicated there, when 
p is sufficiently close to ​ 1 _ 2 ​, players achieve a higher total payoff in the optimal SSE 
than in any HSSGL: ​u​max ​ > ​ u ​. We now confirm that, under similar circumstances, 
the optimal SSE also improves upon the optimal hybrid equilibrium: ​u​max ​ > ​u​H​. 
Interestingly, this ranking obtains even though the optimal hybrid equilibrium also 
employs symmetric punishments after neutral states.

Following Proposition 4, we focus on the subset of region ​I​2​ for which  
​ 1 _ β ​ < p(1 + qk), or equivalently ​p​s​ < p. As established previously and depicted in 

Figure 2, ​p​s​ < ​ 1 _ 2 ​ when q = 1. The subset thus exists. Over this subset, we have from 

Proposition 4 that ​u​max​ = ​u​aut​ + ​ p(qk + 1) − 1
 _ 

1 − β  ​. Next, since 1 < ​ 1 _ β ​ < p(1 + qk), we 
may use (21) and write

​u​H​ − ​u​max​ = [ p(qk + 1) − 1] + p + β(1 − p)​_ u​ + β p ​u _​ − ​u​aut​ − ​ 
p(qk + 1) − 1

  __ 
1 − β

  ​ .

After further manipulations, we find that sign{​u​ max ​ − ​u​H​} = sign{  p − ​p​∗​}, where

	 p∗ ≡ ​  1 _ 
​√ 
_

 qk ​ + 1
 ​.

Simple calculations reveal that 1 < ​p​∗​(qk + 1), ​ ∂​p​∗​
 _ ∂q
 ​ < 0 and li​m ​q→1/k​ ​p​∗​ = 1/2. 

Using these facts, and that ​p​s​ = 1/2 when q = ​ 2 − β _ 
kβ  ​, we may draw the following 

conclusion: For all q ∈ ​( ​ 2 − β _ 
kβ  ​, 1 )​,  there exists ​p​L​(q) satisfying max{  ​p​s​, ​p​∗​} ≤ 

​p​L​(q) < ​ 1 _ 2 ​ and such that, for all p ∈  ​( ​p​L​(q), ​ 1 _ 2 ​ )​, ​u​max ​ > ​u​H​.17

We may now summarize as follows:

Corollary 4: There exists a subset of region ​I​2​ for which the optimal SSE offers 
a strictly higher total payoff than does the optimal hybrid equilibrium, and thus ​
u​H​ < ​u​max ​.

17 For higher values of q, it is possible that the relevant constraint is that p > 1 − ​  1 _ 2q ​. In Figure 1, this in equality 

corresponds to the positively sloped line that separates regions ​I​2​ and ​I​3​. It is thus possible that max{  ​p​s​ , ​p​*​} < ​p​L​(q).
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Finally, we note that the payoffs may also be easily compared in region ​I​1​. In this 
region, the optimal SSE yields autarkic payoffs: ​u​max ​ = ​u​aut​. Throughout this region, 
the optimal hybrid equilibrium corresponds to an HSSGL and thus yields the higher 
payoff ​u​H​ = ​ u ​ > ​u​max ​ = ​u​aut​.

V.  Conclusion

We study a repeated trust game with private information. In our main analysis, 
players are willing to exhibit trust and thereby facilitate cooperative gains only if 
such behavior is regarded as a favor that must be reciprocated, either immediately or 
in the future. Private information is a fundamental ingredient in our theory. A player 
with the ability to provide a favor must have the incentive to reveal this capability, 
and this incentive is provided by an equilibrium construction in which favors are 
reciprocated.

Our study offers new predictions with respect to the social interactions of self-
interested individuals. In particular, we offer the novel prediction that the size 
of a favor owed may decline over time, as neutral phases of the relationship are 
experienced in a favor-exchange relationship. We also describe circumstances in 
which a relationship founded on favor exchange may be inferior to a relationship 
in which an infrequent and symmetric punishment (e.g., a risk of temporary or 
permanent autarky) keeps players honest. Finally, we show that a hybrid relation-
ship, in which players begin with a honeymoon period and then either proceed to 
a favor-exchange relationship or suffer a symmetric punishment, can also offer 
scope for improvement.

While we motivate our analysis in general terms as an equilibrium theory of trust, 
reciprocity and favors, it may also be useful for specific economic applications. 
Following Garicano and Santos (2004), consider for example the market for refer-
rals. Suppose there are two players and two tasks, where player a (b) has an advan-
tage in performing task 1 (2).18 In a given period, an individual may contact player 
a (b) and request that this player perform task 2 (1) for a fee. It is also possible that no 
such contact occurs. Each player can profitably perform both tasks; however, under 
efficient cooperation, player a (b) would refer any individual requesting task 2 (1) 
to player b (a). Assume one player does not observe when the other is contacted: the 
capacity to provide a referral is private information. The contacted player may thus 
privately perform the entire task or refer some or all of the task to the other player. 
If a referral is made, then it is public; e.g., the contacted player may send a referral 
letter. When a referral is made, the individual may not actually contact the other 
player: the referral may not be received. If the referral is received, then the other 
player may elect to send a referral fee. Assume the other player privately observes 
whether the referral is received. If we now think of a referral as a favor and a referral 
fee as immediate reciprocity, then the repeated trust game with private information 
can be reinterpreted as a repeated referral game with private information.

18 For instance, player a (b) may be a plumber (electrician) who is also able to perform certain electrical (plumb-
ing) tasks.
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Much work remains. First, we hope that some of our predictions can be tested in 
the laboratory. In part for this reason, we use the popular trust model. Second, future 
work might consider whether other behavioral regularities might be interpreted 
using the theory of repeated games with private information. Finally, the analysis 
developed here might be reinterpreted or extended in such a way as to offer useful 
insight for other specific economic applications.

Appendix

A. Proof of Proposition 1

We show that the proposed specification implements the corner utility pair 
(u, v) = (​u _​, ​_ u​) for a symmetric self-generating line. First, we observe that 
​u _​ + ​_ u​ = T = p[1 + qk]/(1 − β) = ​u​iθ​ + ​v​iθ​ = ​u​o​ + ​v​o​, for all i ∈ {a, b} and 
θ ∈ {0, 1}. Second, we observe that ​

_
 u​ − ​u _​ = p(1 + qk)/(1 − β + 2βp) ≥ 1/β, 

where the inequality is strict if β > ​β​  ∗​. Third, it is now direct to confirm that the 
specifications satisfy the IR and IC constraints, (1)–(5), and also the promise-
keeping constraints, (6) and (7). Finally, as explained in the statement of the propo-
sition, we may now implement the opposite corner utility pair, (​_ u​, ​u _​).

B. Self-Generating Lines: Necessary Features

We begin by considering the level of trust along a self-generating line. Our first 
finding is that the level of trust is fixed along a self-generating line.

Lemma 1: Along a self-generating line, total payoff is given as

(22)	 T = ​ 
p[2 + (x + y)(qk − 1)]

   __  
1 − β

  ​,

and so the same level of trust, x + y, is used when implementing any pair on the 
self-generating line.

Proof:
Using (6) and (7), if we can implement a pair (u, v) on a self-generating line, then

  T ≡ u + v = p{2 − x − y + q(r + s + β(​u​a1​ + ​v​b1​)) + (1 − q)β(​u​ao​ + ​v​bo​)

	 + q[k(x + y) − (r + s) + β(​u​b1​ + ​v​a1​)] + (1 − q)β(​u​bo​ + ​v​ao​)}

	 + (1 − 2p)β(​u​o​ + ​v​o​).

Rearranging and using ​u​o​ + ​v​o​ = T = ​u​iθ​ + ​v​iθ​, we may solve for T and con- 
firm (22).
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We now consider whether a self-generating line can take the form of a self-
generating point. In other words, can we implement a single utility pair, (u, v), 
using continuation values that satisfy (​u​iθ​, ​v​iθ​) = (u, v) and (​u​o​, ​v​o​) = (u, v)?  
Our next finding confirms that the opportunities for such an outcome are quite 
limited.

LEMMA 2: A point (u, v) constitutes a self-generating line if and only if u = v  
= ​  p

 _ 
1 − β ​.

Proof:
Suppose ​u​iθ​ = ​u​o​ = u and ​v​iθ​ = ​v​o​ = v. Using (2), it follows that qr ≥ x. 

Likewise, (3) implies that qs ≥ y. Next, (4) and (5) respectively imply that 0 ≥ s 
and 0 ≥ r, from which it follows (from feasibility) that s = 0 = r. It thus follows 
that 0 ≥ y and 0 ≥ x, from which it follows (from feasibility) that x = 0 = y. 
Using ​u​iθ​ = ​u​o​ = u and s = r = x = y = 0, we may solve (6) for u, finding that 
u = ​  p

 _ 
1 − β ​.

This finding indicates that a point is self-generating only if it entails no trust (i.e., 
x = y = 0) and thus results in the Nash (autarky) payoff.

We consider now the implementation of the corner of a self-generating line, 
(​u _​, ​_ v​). We focus here on symmetric self-generating lines, where ​u _​ = ​v _​, and ​

_
 u​ = ​_ v​. 

Our finding places some structure on x and y.

Lemma 3: Consider any symmetric self-generating line with T > ​  2p
 _ 

1 − β ​. Let (​u _​, ​_ u​) 
denote the point on the line at which player a’s utility is minimized. The implementa-
tion of (​u _​, ​_ u​) requires x > y, and so player a exhibits more trust.

Proof:
Given T > ​  2p

 _ 
1 − β ​, the line must not be a point (by Lemma 2). Thus, ​u _​ < T/2. 

Using Lemma 1, it follows that

(23)	​ u _​ < ​ 
p[2 + (x + y)(qk − 1)]

   __  
2(1 − β)

 ​ .

Next, using (2) and (4), we have from (6) that

	​ u _​ ≥ p(1 + β ​u​o​) + p{q(ky + β ​u​bo​) + (1 − q)β ​u​bo​} + (1 − 2p)β ​u​o​

	 = p + pqky + (1 − p)β ​u​o​ + pβ ​u​bo​

	 ≥ p + pqky + (1 − p)β ​u _​ + pβ ​u _​

	 = p + pqky + β ​u _​ ,

where in the second inequality we use ​u​o​ ≥ ​u _​ and ​u​bo​ ≥ ​u _​. It follows that
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(24)	​ u _​ ≥ ​ 
p + pqky

 _ 
1 − β

 ​ .

Using (23) and (24), it is clearly necessary that

(25)	 f (x, y) ≡ ​ 
p[2 + (x + y)(qk − 1)]

   __  
2(1 − β)

 ​  − ​ 
p + pqky

 _ 
1 − β

 ​  > 0.

Calculations confirm the following inequalities: ​f​x​ > 0 > ​f​y​ and f (x, x) ≤ 0. By the 
latter inequality and (25), x = y is not possible. Likewise, if x < y, then a con-
tradiction is reached with (25), since the inequalities just stated then imply that 
f (x, y) < 0.

Thus, a player’s utility can be driven to its minimum level along a self-generating 
line only if that player exhibits more trust. In essence, the trust that the player shows 
is the means through which that player’s utility is reduced.

In our model, players can achieve a first-best outcome only if they exhibit total 
trust (x = y = 1). Building on Lemma 3, we now establish that players are not able 
to use a symmetric self-generating line to achieve a first-best outcome.

Corollary 5: There does not exist a symmetric self-generating line that yields 
first-best total payoffs.

The argument is simple. By Lemma 1, if a self-enforcing line gener-
ates first-best total payoffs, then x + y = 2 is required, so that total payoff is  
T = 2pqk/(1 − β). Given x ∈ [0, 1] and y ∈ [0, 1], this means that each utility pair 
on the self-generating line is implemented using x = y = 1. By Lemma 2, this total 
payoff cannot be achieved with a self-generating point. Further, as shown in Lemma 
3, when a symmetric line is used, we can implement the corner only if x < y. An 
implication of Corollary 5 is that no PPE can yield first-best total payoffs.

We consider next a necessary condition that is associated with the implementa-
tion of any (u, v) along a symmetric self-generating line. This condition establishes 
a key relationship between the level of trust and dynamic reciprocity.

Proposition 7: Consider any symmetric self-generating line and associated 
value x + y. For any (u, v) on this line to be implemented, it is necessary that

(26)	​ u​ao​ − ​u​bo​   ≥   ​ 
x + y

 _ 
β
  ​.

Proof:
Consider the implementation of any utility pair (u, v) along a symmetric self-

generating line. Using ​u​o​ + ​v​o​ = T and ​u​iθ​ + ​v​iθ​ = T, we may rewrite (3) as

(27)	 1 − y + q[s − β​u​b1​] − (1 − q)β​u​bo​ ≥ 1 − β​u​o​.
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We may now add (2) and (27) to obtain

(28)	​ u​ao​ − ​u​bo​ + q[​u​a1​ − ​u​b1​ − ​u​ao​ + ​u​bo​] ≥ ​ 
x + y − q(r + s)

  __ 
β
 ​ .

In similar fashion, using ​u​iθ​ + ​v​iθ​ = T, we may rewrite (5) as

(29)	 kx − r − β​u​a1​ ≥ kx − β​u​ao​.

We may now add (4) and (29) to obtain

(30)	​ 
−(r + s)
 _ 

β
 ​  ≥ ​u​a1​ − ​u​b1​ − ​u​ao​ + ​u​bo​.

Using (28) and (30), we see that implementation of (u, v) is possible only if (26) 
holds.

This proposition reveals two important lessons. First, if players achieve a posi-
tive level of trust, then dynamic reciprocity is necessary for the implementation of 
any utility pair along a symmetric self-generating line. In other words, when the 
two players are cooperating along a line, player a must do better tomorrow when 
player a made an investment today and player b did not reciprocate, than when 
player b made an investment today and player a did not reciprocate. It is perhaps 
surprising that dynamic reciprocity is required. After all, immediate reciprocity is 
also possible. The important point is that players can use immediate reciprocity only 
when they have incentive to do so; thus, if player a makes an investment today and 
player b is expected to immediately reciprocate (if possible), then player b must 
foresee a reduced continuation value (i.e., a low ​v​ao​) if immediate reciprocity is 
withheld. Along a self-generating line, this implies in turn that player a must enjoy 
an increased continuation value (i.e., a high ​u​ao​) when player a makes an investment 
and immediate reciprocity fails to materialize. Second, as the players increase the 
level of trust (i.e., as they implement larger values for x + y), incentive compatibil-
ity implies that the degree of dynamic reciprocity (i.e., ​u​ao​ − ​u​bo​) must also grow. 
Greater trust is associated with greater dynamic reciprocity.

C. Highest Symmetric Self-Generating Lines: Necessary Features

We focus on the implementation of a corner utility pair, (u, v) = ( ​u _​, ​_ u​), of an 
HSSGL. By the symmetry of the environment, if we can implement the corner pair 
(​u _​, ​_ u​), then we can also implement the other corner pair, (​_ u​, ​u _​). Following Athey and 
Bagwell (2001), if players have access to a public-randomization device, we can 
implement any utility pair along the HSSGL as a convex combination of the two 
corners.

Let {x, y, r, s,  ​u​iθ​, ​v​iθ​, ​u​o​, ​v​o​} implement (​u _​, ​
_
 u​) on an HSSGL. The pair (​u _​, ​_ u​) 

on an HSSGL may admit distinct implementations; as well, multiple HSSGLs may 
exist in that (​u _​, ​_ u​) and (​_ u​, ​u _​) may differ across HSSGLs. Our characterizations of 
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necessary features thus take different forms. Our strongest characterizations hold 
for any HSSGL and for any implementation of the associated (​u _​, ​_ u​). But it is also 
useful to offer characterizations of necessary features that apply only to certain 
HSSGLs. By characterizing the necessary features of an implementation of the wid-
est HSSGL, we acquire insights that enable us to construct an HSSGL.19

We begin by confirming that an HSSGL must achieve some trust (i.e., x + y > 0) 
and thus generate a total payoff that exceeds the Nash autarky payoff (i.e., 
T > 2p/(1 − β)). To establish these points, we construct a symmetric self-
generating line in which x + y = 1.

Lemma 4: There exists a symmetric self-generating line, in which x + y = 1 and 
thus T = p[1 + qk]/(1 − β) > 2p/(1 − β).

Proof:
We implement the corner utility pair (​u _​, ​_ u​) for a symmetric self-generating line 

with x = 1 > y = 0. The opposite corner utility pair, (​_ u​, ​u _​), then can be imple-
mented in symmetric fashion (with y = 1 > x = 0), and all utility pairs on the 
line between the corners can be implemented using a public-randomization device. 
Consider then the following specifications: x = 1, y = 0, r = s = 0, ​u​ao​ = ​u​a1​  
= ​u _​ + 1/β, ​u​bo​ = ​u​b1​ = ​u​o​ = ​u _​, ​v​ao​ = ​v​a1​ = ​_ u​ − 1/β and ​v​bo​ = ​v​b1​ = ​v​o​ = ​_ u​, 
where ​u _​ = p/(1 − β) and ​

_
 u​ = pqk/(1 − β). Observe that ​u _​ + ​_ u​ = T  

= p[1 + qk]/(1 − β) = ​u​aθ​ + ​v​aθ​ = ​u​o​ + ​v​o​, for all θ ∈ {0, 1}. It is direct to con-
firm that the specifications satisfy the IR and IC constraints, (1)–(5), and also the 
promise-keeping constraints, (6) and (7). Finally, given that β ≥ ​β​  ∗​, calculations 
confirm that ​u _​ + 1/β ≤ ​_ u​, and so every specified utility pair indeed falls on the line 
that connects (​u _​, ​_ u​) and (​_ u​, ​u _​).

Using Lemmas 2 and 4, we conclude that an HSSGL cannot be a point (i.e., ​
_
 u​ > ​u _​ 

on an HSSGL).
Our next result holds for any HSSGL and implementation of the associated (​u _​, ​_ u​).

Lemma 5: Fix any HSSGL. For any implementation of the associated (​u _​, ​_ u​), x = 1 
and thus y < 1.

Proof:
Assume to the contrary that (​u _​, ​_ u​) is implemented on an HSSGL with x < 1. 

Recall from Lemma 1 that T = ​ p[2 + (x + y)(qk − 1)]
  __  

1 − β  ​. We obtain a contradiction by 

constructing an alternative self-generating line with u + v = ​T′​ > T. To construct 
this alternative line, it is sufficient to implement a new corner pair, (​​u _​′​, ​_ u​′ ), on a line 
with ​T′​ > T. The rest of the alternative line can be implemented using convex com-
binations of (​​u _​′​, ​_ u​′ ) and (​_ u​′, ​​u _​′​ ).

19 As noted in footnote 12, given a symmetric self-generating line, it is straightforward to establish the existence 
of a widest self-generating line that contains the given line. The existence of a widest HSSGL is used below in the 
proof of Lemma 7, for example.
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Starting from the implementation of (​u _​, ​_ u​), we implement the new corner pair 
(​​u _​′​, ​_ u​′ ) by making several changes. First, we increase x by a small amount, ε > 0. 

This change leads to a higher value for T, which increases in amount ​ 
p(qk − 1)
 _ 

1 − β  ​ ε ≡ γ. 

To place our new continuation pairs on this higher line, we must ensure that ​​u _​′​ + ​_ u​′ 
is higher than ​u _​ + ​_ u​ by γ  ; likewise, we must ensure that the values for ​u​o​ + ​v​o​ and ​
u​iθ​ + ​v​iθ​ increase by γ, for all i and θ. To this end, we leave ​u​o​, ​u​bo​, and ​u​b1​ at their 
original levels, increase ​u​ao​ and ​u​a1​ by ε/β, increase ​v​ao​ and ​v​a1​ by γ − ε/β, and 
increase ​v​b1​, ​v​bo​, and ​v​o​ by γ. Note that γ − ε/β ≥ 0 if and only if β ≥ ​β​  ∗​. We leave 
s, r, and y unaltered. Given that (​u _​, ​_ u​) was originally implemented, it is straight-
forward to confirm that the new specifications satisfy the IR and IC constraints,  
(1)–(5). Referring to (6), we calculate that ​u _​ is unchanged (i.e., ​u _​ = ​​u _​′​ ). We may 
use (7) to confirm that ​

_
 u​ has increased by γ (i.e., ​

_
 u​′ − ​_ u​ = γ). Thus, all new con-

tinuation values are at or above ​​u _​′​ and at or below ​
_
 u​′, given β ≥ ​β​  ∗​, and thus rest on 

the new—and strictly higher—self-generating line. This is a contradiction, and so 
x = 1 is necessary. Finally, given Corollary 5, it follows immediately that y < 1.

Thus, when implementing the worst value on any HSSGL for player a, player a 
must exhibit full trust (i.e., x = 1) even though player b does not (i.e., y < 1).

We next report two simple conditions that characterize any implementation of 
(​u _​, ​_ u​) along the widest HSSGL.

Lemma 6: Consider the widest HSSGL. For any implementation of the associated 
(​u _​, ​_ u​), ​u​bo​ = ​u _​ and (4) binds.

Proof:
Consider any implementation of (​u _​, ​_ u​) along the widest HSSGL and suppose 

to the contrary that ​u​bo​ > ​u _​. Then ​v​bo​ < ​_ u​ = T − ​u _​. Starting with this implemen-
tation, let us now decrease ​u​bo​ by ε > 0 and increase ​v​bo​ by ε. Making no other 
changes, we observe that the new specifications satisfy the IR and IC constraints 
(1)–(5). Referring to (6) and (7), we see that the new corner utility pair, (​​u _​′​, ​_ u​′ ), sat-
isfies ​​u _​′​ < ​u _​ and ​

_
 u​′ > ​_ u​, contradicting the assumption that the original implementa-

tion corresponded to the widest HSSGL.
Next, consider any implementation of (​u _​, ​_ u​) along the widest HSSGL and sup-

pose to the contrary that (4) is slack. Then β(​u​b1​ − ​u​bo​) > s ≥ 0, and it follows 
that ​u​b1​ > ​u _​ and ​u​bo​ < ​_ u​. Starting with this implementation, let us now decrease ​
u​b1​ by ε > 0 and increase ​v​b1​ by ε. We note that (2) and (5) are unaffected by this 
change and thus continue to hold. Further, (3) is now sure to hold with slack, and 
(4) holds provided that ε is sufficiently small. Once again, we refer to (6) and (7) 
and observe that the new corner utility pair, (​​u _​′​, ​_ u​′ ), satisfies ​​u _​′​ < ​u _​ and ​

_
 u​′ > ​_ u​, 

contradicting the assumption that the original implementation corresponded to the 
widest HSSGL.

As this result confirms, when implementing the worst value for player a along the 
widest HSSGL, player a’s continuation value remains at this worst value in the event 
that player a fails to reciprocate in the current period.
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We now consider specific implementations of the corner utility pair for the widest 
HSSGL. In particular, we posit an implementation of the widest HSSGL and then 
show that an implementation must exist that satisfies useful properties.

Lemma 7: Consider the widest HSSGL. There exists an implementation of 
the associated (​u _​, ​_ u​) in which (i) (5) binds, (ii) r = s = 0, ​u​a1​ = ​u​ao​ and ​u​b1​ = ​
u​bo​, (iii) (3) and (2) bind, (iv) ​u​ao​ = ​u​bo​ + (x + y)/β, and (v) x = 1, ​u​bo​ = ​u _​, 
and (4) binds.

Proof:
To prove part (i), we fix any symmetric self-generating line and implemen-

tation of the associated (​u _​, ​_ u​). Suppose that (5) is slack. Then β(​v​a1​ − ​v​ao​)  
= β(​u​ao​ − ​u​a1​) > r ≥ 0, and it follows that ​u​a1​ < ​_ u​ and ​u​ao​ > ​u _​. Starting with this 
implementation, let us now decrease ​u​ao​ by ε > 0 and increase ​u​a1​ by (1 − q)ε/q. 
Correspondingly, we increase ​v​ao​ by ε > 0 and decrease ​v​a1​ by (1 − q)ε/q. For ε 
sufficiently small, (5) continues to hold; furthermore, all other constraints are unaf-
fected by this change. Thus, the new specification also implements (​u _​, ​_ u​) along the 
same self-generating line. We can proceed in this way until (5) binds.

For part (ii), we consider the widest HSSGL. By Lemma 6, we know that (4) 
binds in the implementation of (​u _​, ​_ u​). Further, as just established, there exists an 
implementation of (​u _​, ​_ u​) under which (5) binds. Thus, (​u _​, ​_ u​) can be implemented 
with a specification under which (4) and (5) bind. For this implementation, we thus 
have that r + β​u​a1​ = β​u​ao​ and s + β​v​b1​ = β​v​bo​. Given ​u​ao​ and ​v​bo​, any values for 
r, s, ​u​a1​, and ​v​b1​ that satisfy these latter two equations and feasibility constraints can 
also be used to implement (​u _​, ​_ u​). Thus, there exists an implementation in which ​
u​a1​ = ​u​ao​, ​v​b1​ = ​v​bo​, r = 0 and s = 0.

For part (iii), we consider the widest HSSGL. We know there exists an implemen-
tation of (​u _​, ​_ u​) in which (4) and (5) bind, and ​u​a1​ = ​u​ao​, ​v​b1​ = ​v​bo​, r = 0 and s = 0. 
By Lemma 6, we also know that ​u​bo​ = ​u _​. Since x = 1 by Lemma 5, we may use 
Proposition 7 and further conclude that ​u​a1​ = ​u​ao​ ≥ ​u​bo​ + (x + y)/β > ​u _​. Finally, 
we know from Corollary 5 that y < 1.

Let us now suppose that (3) is slack in this implementation. Using the prop-
erties just reported, we then find that β[​u​o​ − ​u​bo​] > y ≥ 0, and so it follows that ​
u​o​ > ​u _​. We now derive a contradiction, by implementing an alternative utility pair, 
(​​u _​′​, ​_ u​′ ), such that ​T′​ = ​​u _​′​ + ​_ u​′ > ​u _​ + ​_ u​ = T. Starting with the original implemen-
tation, we first increase y by ε > 0, where ε is small. This change generates an 

increase in T in amount γ = ​ p(qk − 1)
 _ 

1 − β  ​ ε. It also increases the right-hand side of (6) 
by pqkε. Second, we decrease ​u​ao​, ​u​a1​, and ​u​o​ in amount δ, where δ satisfies pβδ + 
(1 − 2p)βδ = pqkε and is thus given by δ = ​  pqkε

 _ β(1 − p) ​. Third, we increase ​v​ao​, ​v​a1​, 

and ​v​o​ in amount δ + γ. Finally, we increase ​v​b1​ and ​v​bo​ in amount γ, while leaving ​
u​b1​ and ​u​bo​ unaltered. It is straightforward to confirm that our new specifications sat-
isfy the IR and IC constraints (1)–(5), where (3) continues to hold if ε is sufficiently 
small. Referring to (6), we see that ​​u _​′​ = ​u _​. Since ​u​a1​, ​u​ao​, and ​u​o​ all exceed ​u _​, all 
continuation values under our new specification continue to exceed ​​u _​′​ = ​u _​, provided 
that ε is small. Referring to (7), we see that ​

_
 u​′ = ​_ u​ + γ > ​_ u​. Since ​v​ao​, ​v​a1​, and ​v​o​ 
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are all less than ​
_
 u​, all continuation values under our new specifications rest below ​

_
 u​ ′. 

The contradiction is now established.
Last, we suppose that (2) is slack in this implementation. Recalling the proper-

ties reported above, we know that ​u​a1​ = ​u​ao​ > ​u _​ and hence ​v​a1​ = ​v​ao​ < ​_ u​. We now 
derive a contradiction by constructing a wider HSSGL. To this end, we start with the 
original implementation, and then decrease ​u​a1​ by ε and increase ​v​a1​ by ε. Making 
no other changes, we observe that the new specifications satisfy the IR and IC con-
straints (1)–(5). Referring to (6) and (7), we see that the new specification imple-
ments (​​u _​′​, ​_ u​′ ), with ​​u _​′​ < ​u _​ and ​

_
 u​′ > ​_ u​. Thus, we can implement a wider line without 

changing T, which is a contradiction.
For part (iv), we observe from above that there exists an implementation of  

(​u _​, ​
_
 u​) on the widest HSSGL, in which all four incentive constraints (i.e., (2)–(5)) 

bind, and ​u​a1​ = ​u​ao​, ​v​b1​ = ​v​bo​, r = 0 = s, ​u​bo​ = ​u _​ and x = 1 > y. Given that all four 
incentive constraints bind, we may follow the steps in the proof of Proposition 7 
and confirm that the necessary condition (26) then must hold with equality: 
​u​ao​ − ​u​bo​ = (x + y)/β. Thus, ​u​ao​ = ​u _​ + (x + y)/β.

Finally, part (v) simply lists properties (identified and used above) which we estab-
lish in Lemmas 5 and 6 as being true in any implementation of the widest HSSGL. 

According to this result, if we can implement a corner utility pair and thereby 
construct the widest HSSGL, then we can do so with an implementation for which 
(5) binds and in which neither player exhibits immediate reciprocity. Referring to 
Proposition 7 and Lemma 7, we are now able to summarize some key findings on 
dynamic and immediate reciprocity.

Corollary 6: For any symmetric self-generating line, any utility pair on the 
line can be implemented only if the implementation embodies dynamic reciprocity. 
In particular, for any HSSGL, the associated (​u _​, ​_ u​) can be implemented only if the 
implementation embodies dynamic reciprocity. In the widest HSSGL, there exists an 
implementation of the associated (​u _​, ​_ u​) such that neither player exhibits immediate 
reciprocity.

In short, dynamic reciprocity is necessary for constructing an HSSGL, but immedi-
ate reciprocity is not.

We are now in position to derive an upper bound for y.

Proposition 8: Fix any HSSGL. For any implementation of the associated (​u _​, ​_ u​), 
x = 1 and y ≤ ​ β − β  ∗ _ β + β  ∗

 ​.

Proof:
Consider any HSSGL and the implementation of the associated (​u _​, ​_ u​). By 

Lemma 5, x = 1. Suppose to the contrary that y > ​ β − ​β​∗​ _ β + ​β​∗​ ​. Let us now consider the 

widest HSSGL. (Recall that x + y is invariant across all HSSGLs.) By Lemma 7, 
we can implement the associated (​u _​, ​_ u​) with all four incentive constraints (i.e., 
(2)–(5)) binding, ​u​a1​ = ​u​ao​ = ​u _​ + (1 + y)/β, ​u​b1​ = ​u​bo​ = ​u _​, and r = 0 = s. 
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Referring to the binding (3), we find that ​u​o​ may be expressed as ​u​o​ = ​u _​ + y/β. 
Using this expression, we may derive from (6) that

(31)	​ u _​ = ​ 
p + y[  p(qk − 1) + 1]

  __  
1 − β

 ​ .

Using as well that ​u​o​ + ​v​o​ = ​u​iθ​ + ​v​iθ​ = ​u _​ + ​_ u​, we may derive from (7) that

(32)	​
_
 u​ = ​ 

pqk − y
 _ 

1 − β
 ​ .

Recalling that ​u​a1​ = ​u​ao​ = ​u _​ + (1 + y)/β and using (31), we may derive that

(33)	​ u​ao​ = ​ 
1 + y − β[1 − p − yp(qk − 1)]

   ___  
β(1 − β)

 ​ .

Finally, we may use (32) and (33) to find that ​
_
 u​ ≥ ​u​ao​ if and only if y ≤ ​ β − ​β  ​∗​ _ β + ​β  ​∗​ ​.  Thus, 

under our assumption that y > ​ β − ​β  ​∗​ _ β + ​β  ​∗​ ​, it follows that ​
_
 u​ < ​u​ao​, and so a contradiction 

is obtained.

Intuitively, the disfavored player is willing to exhibit full trust only if the future 
reward of becoming the favored player is sufficiently large. This implies in turn an 
upper bound on the investment that is provided by the favored player.

We note that Proposition 8 implies an upper bound for the total level of trust; in 
particular, this proposition establishes that, in the HSSGL,

(34)	 x + y ≤ ​ 
2β
 _ 

β + ​β  ​∗​
 ​.

Thus, Proposition 8 provides important guidance as we go forward and attempt to 
construct an HSSGL: if we can implement a symmetric self-generating line with 
x + y = 2β/(β + ​β  ​∗​), then we can be assured that we have constructed an HSSGL.

D. Highest Self-Generating Line:  
Implementation with a Public Randomization Device

We now construct an HSSGL. We do this in two ways. First, in this subsection, we 
assume the existence of a public-randomization device and achieve the construction 
by implementing the corner utility pair (​u _​, ​_ u​) along an HSSGL. Using Proposition 

8, we can be assured that we have an HSSGL if x = 1 and y = ​ β − ​β  ​∗​ _ β + ​β  ​∗​ ​. Under this 

approach, when the implementation calls for an intermediate utility pair, the players 
may use the device to randomize over (​u _​, ​_ u​) and (​_ u​, ​u _​) and generate the intermediate 
pair in expectation. Second, in the next subsection in which we prove Proposition 2, 
we construct an HSSGL when players do not have a public-randomization device. 
Any intermediate utility pair then must be directly implemented.
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We begin with the situation in which players have access to a public-
randomization device.

Proposition 9: There exists an HSSGL, in which x + y = 2β/(β + ​β​  ∗​) and  
T = p​[ 2 + ​  2β _ β + β  ∗ ​ (qk − 1) ]​/(1 − β). In particular, the corner utility pair (​u _​, ​_ u​) can 
be implemented using the following specifications: x = 1, y = (β − ​β  ​∗​)/(β + ​β​  ∗​), 
r = s = 0, ​u​ao​ = ​u​a1​ = ​u _​ + (1 + y)/β = ​_ u​,  ​u​bo​ = ​u​b1​ = ​u _​,  ​u​o​ = ​u _​ + y/β, ​v​ao​  
= ​v​a1​ = ​u _​, ​v​bo​ = ​v​b1​ = ​_ u​, and ​v​o​ = ​_ u​ − y/β, where

(35)	​ u _​ = ​ 
p + ​ β − ​β  ​∗​ _ β + ​β​  ∗​ ​ ​ 

1 _ 
​β​  ∗​ ​  __ 

1 − β
  ​, and

(36)	​ _ u​ = ​u _​ + ​  2 _ 
β + ​β​  ∗​

 ​.

The corner utility pair (​_ u​, ​u _​) can be implemented symmetrically, by interchanging 
x with y and u with v in the above specification. Finally, any utility pair on the line 
between the corners—and specifically the utility pair (​u​o​, ​v​o​)—can be implemented 
using a public-randomization device so that each corner utility pair is selected for 
implementation with appropriate probability.

Proof:
By Proposition 8, if a symmetric self-generating line exists for which x + y  

= 2β/(β + ​β  ​∗​), then this line is an HSSGL. Thus, the proof is complete if 
we show that the specifications above implement the corner utility pair (u, v)  
= (​u _​,  ​_ u​) for a symmetric self-generating line. First, we observe that ​u _​ + ​_ u​ = T 

= p​[ 2 + ​  2β _ β + ​β​  ∗​ ​ (qk − 1) ]​/(1 − β) = ​u​iθ​ + ​v​iθ​ = ​u​o​ + ​v​o​, for all i ∈ {a, b} and 

θ ∈ {0, 1}. Second, we observe that ​
_
 u​ = ​u​ao​ = ​u​a1​ > ​u​o​ ≥ ​u _​, where the final 

inequality is strict when β > ​β​  ∗​. Third, it is direct to confirm that the specifica-
tions satisfy the IR and IC constraints, (1)–(5), and also the promise-keeping con-
straints, (6) and (7). In particular, the IC constraints all bind. Finally, as explained 
in the statement of the proposition, it is now direct to implement the opposite 
corner utility pair, (​_ u​, ​u _​), and we may then implement (​u​o​, ​v​o​) by using a public-
randomization device. 

The players may achieve a symmetric ex ante payoff of (1/2)(​u _​ + ​_ u​) if they 
begin the game with a coin toss that determines whether they implement (​u _​, ​_ u​) 
or (​_ u​, ​u _​). If, say, player b wins the toss, they start by implementing (​u _​, ​_ u​) with 
player b as the favored player. In this implementation, if player a receives the 
income, then player a exhibits full trust (x = 1) and becomes the favored player 
in the next period when the players implement (​_ u​, ​u _​); if instead player b receives 
the income, then player b exhibits partial trust ( y < 1) and remains the favored 
player in the next period when the players again implement (​u _​, ​

_
 u​); and finally 

if neither player reports income, then in the next period the players utilize the 

08_MIC20100093_52.indd   246 4/16/13   11:28 AM



Vol. 5 No. 2� 247ABDULKADIRO​ ˘ 
 

 G​LU and bagwell: TRUST, RECIPROCITY, AND FAVORS

public-randomization device to implement in expectation the utility pair (​u​o​, ​v​o​).  
Notice that v = ​v​o​ > ​u​o​ = u, and so player b remains the favored player in the 
final case; however, if β > ​β​∗​ so that y > 0, then player a’s expected utility fol-
lowing the event in which no income is reported is strictly greater than player 
a’s expected utility at the beginning of the period. As explained in the text, the 
implementation of (​u _​, ​

_
 u​) requires player b to report income (and thus send y to 

player a), and this is accomplished by penalizing player b somewhat when no 
income is reported.

While the implementation of an HSSGL in Proposition 9 does not uti-
lize immediate reciprocity, alternative implementations of an HSSGL exist 
in which immediate reciprocity is used. Consider the following specifications: 
x = 1, y = (β − ​β​  ∗​)/(β + ​β​  ∗​), ​u​b1​ − s/β = ​u​bo​ = ​u _​, ​u​ao​ = ​u​a1​ + r/β = ​u _​ + 
(1 + y)/β = ​_ u​,  ​u​o​ = ​u _​ + y/β, ​v​ao​ = ​v​a1​ − r/β = ​u _​, ​v​bo​ = ​v​b1​ + s/β = ​_ u​, 
and ​v​o​ = ​_ u​ − y/β. These specifications satisfy the IR and IC constraints,  
(1)–(5), and also the promise-keeping constraints, (6) and (7). Further, it is direct 
to confirm that ​

_
 u​ ≥ ​u​b1​ = ​u _​ + s/β if s ≤ β[​_ u​ − ​u _​ ] = 1 + y; likewise, we see that 

​u _​ ≤ ​u​a1​ if r ≤ 1 + y. Recalling that s and r are feasible if and only if s ∈ [0, ky] 
and r ∈ [0, kx], we may conclude that these specifications also implement an 
HSSGL provided that s ∈ [0, min(ky, 1 + y)] and r ∈ [0, min(k, 1 + y)], where 
y = (β − ​β​  ∗​)/(β + ​β​  ∗​). We note that this family of implementations includes the 
implementation featured in Proposition 9 as a special case. Based on this discus-
sion, we see that the practice of immediate reciprocity implies that a player that 
extends trust enjoys a less valuable future when some of that trust is reciprocated 
in the immediate period; for example, if the players seek to implement (​u _​, ​_ u​) 
and player a receives income, we see that ​u​a1​ < ​u​ao​ when r > 0. By contrast, 
as Proposition 7 suggests, our analysis indicates that the extent of dynamic reci-
procity, which we define as ​u​ao​ − ​u​bo​, remains at the value ​

_
 u​ − ​u _​ whether or not 

players exhibit immediate reciprocity.

E. Proof of Proposition 2

Pick any utility pair (u, v) such that u ∈ [ ​u _​, ​
_
 u​ ], v ∈ [ ​u _​, ​

_
 u​ ] and u + v = ​u _​ + ​_ u​. 

From Proposition 9, we know that ​u _​ + ​_ u​ = T = p​[ 2 + ​  2β _ β + ​β​  ∗​ ​ (qk − 1) ]​/(1 − β). 

Simplifying, we have that ​u _​ + ​_ u​ = ​  2p
 _ 

1 − β ​ + ​  2β(1 − ​β​   ∗​)
  __  (β + ​β​   ∗​)(1 − β)​β​   ∗​ ​. We also know that ​

_
 u​ − ​u _​ = 2/(β + ​β​   ∗​), where ​u _​ is given by (35). Using these facts, we may use (10) 

and (11) to confirm that x + y = 2β/(β + ​β​   ∗​). Thus, by setting ​u​ao​ = ​u​a1​ = ​_ u​, we 
also set ​u​ao​ = ​u​a1​ = ​u _​ + (x + y)/β. We now proceed as follows. First, using (12) 
and (13), we may confirm that ​u _​ + ​_ u​ = ​u​iθ​ + ​v​iθ​ = ​u​o​ + ​v​o​, for all i ∈ {a, b} and 
θ ∈ {0, 1}. Second, we may use (10)–(13) to confirm that the values for x, y, ​u​o​, and ​
v​o​ are feasible. In particular, using (10), we find that x ≥ 0 since v ≥ ​u _​ and β ≥ ​β​  ∗​,  
where x > 0 if v > ​u _​ or β > ​β​  ∗​; and we find that x ≤ 1 since v ≤ ​_ u​, where x < 1 
if v < ​_ u​. Similarly, using (11), we find that y ≥ 0 since u ≥ ​u _​ and β ≥ ​β​  ∗​, where 
y > 0 if u > ​u _​ or β > ​β​  ∗​; and we find that y ≤ 1 since u ≤ ​_ u​, where y < 1 if  
u < ​_ u​. Next, we may use (12) to confirm that ​u​o​ ≤ ​_ u​ since u ≤ ​_ u​ and β ≥ ​β​  ∗​, 
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where ​u​o​ < ​_ u​ if u < ​_ u​ or β > ​β​  ∗​; and we find that ​u​o​ ≥ ​u _​ since u ≥ ​u _​ and β ≥ ​β​  ∗​, 
where ​u​o​ > ​u _​ if u > ​u _​ or β > ​β​  ∗​. Finally, given that ​u _​ + ​_ u​ = ​u​o​ + ​v​o​ = u + v, it 
now follows that ​v​o​ ≥ ​u _​ since v ≥ ​u _​ and β ≥ ​β​  ∗​, where ​v​o​ > ​u _​ if v > ​u _​ or β > ​β​  ∗​; 
and it follows as well that ​v​o​ ≤ ​_ u​ since v ≤ ​_ u​ and β ≥ ​β​  ∗​, where ​v​o​ < ​_ u​ if v < ​_ u​ or 
β > ​β​  ∗​. Third, it is direct to confirm that the specifications satisfy the IR and IC con-
straints, (1)–(5), and also the promise-keeping constraints, (6) and (7). In particular, 
the IC constraints all bind. Thus, any (u, v) along the line connecting (​u _​,  ​_ u​) and 
(​_ u​, ​u _​) can be implemented using only continuation values drawn from that line. 

F. Proof of Proposition 3

Consider the widest HSSGL. Let λ be the set of points on this HSSGL for which 
there exist multiple implementations. Suppose to the contrary that λ ≠ 0/ . Then it is 
straightforward to show that λ is convex and symmetric around the 45-degree line; 
therefore, λ contains (​̃ u ​, ​ u ​), the middle point of this HSSGL. We will show that 
(​̃ u ​, ​ u ​) is uniquely implemented, which then establishes that λ = 0/ .

Consider a point (u, v) on the widest HSSGL and an implementation of it, 
i = {x, y, r, s, ​u​iθ​, ​v​iθ​, ​u​o​, ​v​o​}. Following the proof of Lemma 7, given any imple-
mentation, we can find an alternative implementation such that (4) and (5) bind, 
r = s = 0 and ​u​i0​ = ​u​i1​≡​u​i​, with all other variables remaining the same. For such 
an implementation, suppose that (2) is slack; that is, suppose β(​u​a​ − ​u​o​) > x ≥ 0. 
Then, for small ε > 0, if we decrease ​u​a​ by ε, increase ​u​o​ by ​  p

 _ 1 − 2p ​ ε, and change 
nothing else, the resulting implementation is feasible and implements (u, v). The 
same argument applies to a slack (3) as well. Therefore, given any implementation, 
we can find another implementation with the same values for x and y and with (2) 
and (3) binding.

We know that ​̃ i ​ = {​̃ x ​ = ​ y ​ = ​  β _ β + ​β​   ∗​ ​, ​̃ r ​ = ​ s ​ = 0, ​​ u ​​aθ​ = ​​ v ​​bθ​ = ​
_
 u​, ​​ u ​​bθ​ = ​​ v ​​aθ​ = ​u _​, 

​​ u ​​o​ = ​​ v ​​o​ = ​ u ​} implements (​̃ u ​, ​ u ​).
We now argue that (​̃ u ​, ​ u ​) is uniquely implemented. Suppose to the contrary 

that there exists another implementation i = {x, y, r, s, ​u​iθ​, ​v​iθ​, ​u​o​, ​v​o​} of (​̃ u ​, ​ u ​). As 
established above, we can focus on an implementation i such that (4), (5), (2), 
and (3) bind, r = s = 0, and ​u​i0​ = ​u​i1​ ≡ ​u​i​. Define the following: Δx ≡ x − ​ x ​,  
Δy ≡ y − ​ y ​, Δ​u​π​ ≡ ​u​π​ − ​​ u ​​π​, Δ​v​π​ ≡ ​v​π​ − ​​ v ​​π​ for π ∈ {a, b, o}. Then Δx = −Δy, 
since x + y = ​ x ​ + ​ y ​.

First, suppose that x ≠ ​ x ​. As (2) and (3) bind under both ​̃ i ​ and i, we have that 
Δx = β(Δ​u​a​ − Δ​u​o​) and Δy = β(Δ​v​b​ − Δ​v​o​) = −β(Δ​u​b​ − Δ​u​o​). Further, the 
promise-keeping constraint, (6), must hold under both ​̃ i ​ and i. Thus,

	 0 = −pΔx + pqkΔy + β[  pΔ​u​a​ + pΔ​u​b​ + (1 − 2p)Δ​u​o​]

	 = −pΔx + pqkΔy + β[  p(Δ​u​a​ − Δ​u​o​) + p(Δ​u​b​ − Δ​u​o​) + Δ​u​o​],

which implies

	 Δ​u​o​ = ​ 
p(qk − 1)
 _ 

β
 ​  Δx.

08_MIC20100093_52.indd   248 4/16/13   11:28 AM



Vol. 5 No. 2� 249ABDULKADIRO​ ˘ 
 

 G​LU and bagwell: TRUST, RECIPROCITY, AND FAVORS

Since Δx ≠ 0 and ​ 
p(qk − 1)
 _ β  ​ > 0, Δ​u​o​ and Δx have the same sign. Recall that 

​​ u ​​aθ​ ≡ ​​ u ​​a​ = ​_ u​. Thus, Δ​u​a​ ≤ 0. Now, if Δx = β(Δ​u​a​ − Δ​u​o​) > 0, then Δ​u​o​ < 0, 
which is a contradiction. So, Δx ≤ 0 must hold. Using a similar argument, we can 
show that Δy ≤ 0 must hold as well. Then Δy = −Δx implies Δx ≥ 0, so that 
Δx = Δy = 0.

Second, suppose that Δ​u​o​ ≠ 0 and Δx = Δy = 0. As (2) and (3) bind under 
both ​̃ i ​ and i, we have that Δ​u​a​ = Δ​u​o​ and Δ​u​b​ = Δ​u​o​. As just argued, Δ​u​a​ ≤ 0. 
Similarly, with ​​ u ​​bθ​ ≡ ​​ u ​​b​ = ​u _​, Δ​u​b​ ≥ 0. Thus, it must be that Δ​u​o​ = 0.

We conclude that (​̃ u ​, ​ u ​) is uniquely implemented. Thus, λ = 0/. That is, every 
point (u, v) on the widest HSSGL is implemented uniquely.

G. Strongly Symmetric Equilibria (SSE)

We provide here proofs concerning strongly symmetric equilibria (SSE). Given 
any ​ψ​s​ = [​u​aut​, u], following Abreu, Pearce, and Stacchetti (1990), define

	​ B​ss​(​ψ​s​)  = {v : ∃x ∈ [0, 1],  r ∈ [0, kx],  ​v​o​, ​v​10​, ​v​11​ ∈ ​ψ​s​ such that

	 I​C​x​ : 1 − x + q(r + β  ​v​11​) + (1 − q)β​v​10​ ≥ 1 + β​v​o​,

	 I​C​θ​  : kx − r + β​v​11​ ≥ kx + β​v​10​,

	 PK  : v = p[1 − x + q(r + β​v​11​) + (1 − q)β​v​10​]

	 + p[q(kx − r + β​v​11​) + (1 − q)β​v​10​]

	 + (1 − 2p)β​v​o​}.

Let ​ψ​ s​ ∗​ = [​u​aut​, ​u​max ​] be the maximal fixed point of ​B​ss​. That is, if [​u​l​, ​u​h​] is a fixed 
point of ​B​ss​, then [​u​l​, ​u​h​] ⊂ [​u​aut​, ​u​max ​].

Refer to a pair (q, p) as an information structure. Consider the set I  
= {(q, p) : q ∈ (​ 1 _ 

k
 ​, 1], p ∈ (0, ​ 1 _ 2 ​]}, which is the set of all feasible information 

structures.

H. Solving for ​ψ​ s​ ∗​

Start with a very large ​u​1​. Given ​u​n​, by slightly abusing the notation, define ​u​n+1​ 
as follows:

	​ u​n+1​ = ​B​ss​(​u​n​) = ​max ​ 
 
  ​  
  ​ v = p[1 − x + q(r + β  ​v​11​) + (1 − q)β  ​v​10​]

	 + p[q(kx − r + β​v​11​) + (1 − q)β​v​10​]

	 + (1 − 2p)β​v​o​

	 =  p[1 + (qk − 1)x + 2β(q​v​11​ + (1 − q)​v​10​)]

	 + (1 − 2p)β​v​o​
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subject to 

	 x ∈ [0, 1],  r ∈ [0, kx],  ​v​o​, ​v​10​, ​v​11​ ∈ [​u​aut​, ​u​n​],

	 I​C​x​ : 1 − x + q(r + β  ​v​11​) + (1 − q)β  ​v​10​ ≥ 1 + β  ​v​o​,

	 I​C​θ​ : kx − r + β  ​v​11​ ≥ kx + β  ​v​10​.

We will employ Abreu, Pearce, and Stacchetti (1990) to solve for ​u​max ​. Accord
ingly, if ​u​1​ > ​u​max ​, then ​B​ss​(​u​n​) < ​u​n​ and li​m ​n→∞​ ​u​n​ = ​u​max ​ = ​B​ss​(​u​max ​). Let ​u​eff​  

= ​  pqk
 _ 

1 − β ​ be the average utility of the first-best solution, i.e., investing x = 1  

every period when some agent receives positive income. Then ​u​max ​ ≤ ​u​eff​  ; there-
fore, it would suffice to start with ​u​1​ = ​u​eff.​

Proposition: For any u ≥ ​u​aut​, I​C​x​ and I​C​θ​ bind at the solution of ​B​ss​(u).

Proof:
The proof proceeds via three claims.

Claim 1: ​v​11​ = u.

Proof:
If ​v​11​ < u, then increasing ​v​11​ increases the objective without violating I​C​x​ and 

I​C​θ​. Contradiction.

Claim 2: I​C​θ​ is binding.

Proof:
Suppose in contrary that I​C​θ​ is slack. Then u − ​v​10​ > ​ r _ β ​ ≥ 0, i.e., u > ​v​10​. Now 

increase ​v​10​ by ε > 0. I​C​x​ becomes slack, I​C​θ​ continues to hold if ε is small enough. 
The objective increases. Contradiction.

Claim 3: I​C​x​ is binding.

Proof:
To the contrary, suppose that I​C​x​ is slack. Then ​v​o​ = u and x = 1. To see this, 

check the following: If ​v​o​ < u, then increase ​v​o​ by ε > 0. I​C​x​ is not violated if ε 
is small enough; I​C​θ​ is not affected; and the objective increases. Contradiction. If 
x < 1, then increase x by ε > 0. I​C​x​ is not violated if ε is small enough; I​C​θ​ is not 
affected; and the objective increases since qk > 1. Contradiction.

Substituting ​v​o​ = u and x = 1, I​C​x​ becomes q(r + βu) + (1 − q)β​v​10​ > 1 + βu, 
equivalently qr > 1 + (1 − q)β(u − ​v​10​). Binding I​C​θ​ yields r = β(u − ​v​10​). 
These together imply (2q − 1)r > 1. Thus, a contradiction is immediate unless 
2q − 1 > 0. In that event, r > ​  1 _ 2q − 1 ​ > 0, and so u > ​v​10​. We can thus increase ​
v​10​ by ε > 0, and decrease r by βε, and I​C​θ​  continues to hold. Then the total change 
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on the left-hand side of I​C​x​ can be computed as (1 − 2q)βε. Since I​C​x​ is slack by 
supposition, I​C​x​ continues to hold if ε is small. The total change in the objective can 
be computed as 2p(1 − q)βε > 0, so the objective increases. Contradiction.

This completes the proof of the proposition.

Now, binding I​C​x​ and binding I​C​θ​ imply ​v​o​ =  2qu + (1 − 2q)​v​10​ − ​ x _ β ​. 
Substituting ​v​11​ = u, ​v​o​ =  2qu + (1 − 2q)​v​10​ − ​ x _ β ​, and r = β(u − ​v​10​) yields

​B​ss​(u) = max p + 2q(1 − p)βu + (p(qk + 1) − 1)x + (1 − 2q(1 − p))β​v​10​ ,

subject to 

(37)	​ v​10​, ​v​o​  = 2qu + (1 − 2q)​v​10​ − ​ x _ 
β
 ​ ∈ [​u​aut​, u], 

(38)	 0 ≤ x ≤ 1, 

(39)	 β(u − ​v​10​) ≤ kx.

The following three curves will be crucial in characterizing the optimal strongly 
symmetric equilibrium:

	C urve 1 : p = ​  1 _ 
qk + 1

 ​,

	C urve 2 : p = ​ 
2q − 1

 _ 
2q

 ​ ,

	C urve 3 : p = ​ 
k(2q − 1) − 1

  __ 
qk − 1

 ​ .

Curve 1 is convex and decreasing in q. Curves 2 and 3 are both concave and 

increasing in q. Furthermore, all three curves intersect at ​q​∗​ = ​ k + ​√
______

 ​k​2​ + 8k ​
 _ 4k  ​ ∈ 

​( ​ 1 _ 2 ​, 1 )​. For q < ​q​∗​, curve 1 lies above curve 2, which lies above curve 3. For q > ​q​∗​, 
curve 3 lies above curve 2, which lies above curve 1. The three curves partition the 
set of information structures into six subsets. See Figure 3. We drop the superscript 
of ​u​n​ to simplify the notation.

Case 1: p ≥ ​ 
2q − 1

 _ 2q  ​, i.e., above curve 2.

Consider two subcases:

Case 1.1: p ≤ ​  1 _ qk + 1 ​, i.e., below curve 1.

The coefficient of x and ​v​10​ are nonpositive and nonnegative, respectively, in 
the objective of ​B​ss​(u). Therefore, the objective function is nonincreasing in x 
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and nondecreasing in ​v​10​. Setting x = 0, ​v​10​ = u, check that ​v​o​ = u and r = 0 so 
that all the constraints are satisfied. This implies ​B​ss​(u) = p + βu for all u. Then  
​B​ss​(u) < u as long as u > ​u​aut​. Therefore, ​u​∞​ = li​m ​n→∞​ ​u​n​ = ​u​aut​. Hence, ​u​max ​ = ​
u​aut​ in this case.

Case 1.2: p > ​  1 _ qk + 1 ​, i.e., above curve 1.

The coefficient of x is positive and the coefficient of ​v​10​ is nonnegative in the 
objective of ​B​ss​(u). Check whether x = 1 and ​v​10​ = u is a solution for ​B​ss​(u). 
Substituting x = 1 and ​v​10​ = u, we obtain ​B​ss​(u | x = 1, ​v​10​ = u) = p + βu + 
p(qk + 1) − 1. Also, ​B​ss​(u | x = 1,  ​v​10​ = u) < u if and only if u > ​u​aut​ + 
​ p(qk + 1) − 1

 _ 
1 − β  ​  = γ. Therefore, starting with ​u​1​ = ​u​eff​ > γ, we obtain a decreasing 

sequence of {​u​n​} with ​u​∞​ = li​m ​n→∞​ ​u​n​ = γ.
Now check feasibility of the solution x = 1 in the limit: ​v​o​ = ​u​∞​ − ​ 1 _ β ​ ≥ ​u​aut​ if 

and only if β ≥ ​  1 _ 
p(qk + 1) ​. Since p(qk + 1) − 1 > 0, i.e., ​  1 _ 

p(qk + 1) ​ < 1, in these 

regions, there exists β ≥ ​  1 _ 
p(qk + 1) ​.  Then, for all u ≥ ​u​max ​, all the constraints are 

satisfied when x = 1, ​v​10​ = u. Therefore, ​u​max​ = ​u​aut​ + ​ p(qk + 1) − 1
 _ 

1 − β  ​. Furthermore, 
check that li​m ​p→1/2​ ​u​max ​ = li​m ​p→1/2​ ​u​eff​.

To address the possibility raised in Proposition 5, we now further suppose that 
q ≤ 1/2 and β < ​  1 _ 

p(qk + 1) ​. Suppose that both x < 1 and ​v​10​ < ​u​max ​ is satisfied 

in the solution of ​B​ss​(​u​max ​). Then, we may increase ​v​10​ by ε and increase x by 
(1 − 2q)βε. If ε > 0 is small enough, x < 1 and ​v​10​ < ​u​max ​ continue to hold. 
Furthermore, ​v​o​ remains the same as defined by (37). Thus, all constraints hold 
and the objective of ​B​ss​(​u​max ​) increases, which is a contradiction. As a result, either 
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x = 1 or ​v​10​ = ​u​max ​ in the solution of ​B​ss​(​u​max ​). Suppose x = 1. Given q ≤ 1/2, we 
may use (37) to find that

	​ v​o​ = 2q​u​ max ​ + (1 − 2q)​v​10​ − ​ 1 _ 
β
 ​ ≤ 2q​u​ max ​ + (1 − 2q)​u​ max ​ − ​ 1 _ 

β
 ​ = ​u​ max ​ − ​ 1 _ 

β
 ​.

Arguing as in the previous paragraph, we may now use β < ​  1 _ 
p(qk + 1) ​ and con-

clude that it is not possible that x = 1 in the solution of ​B​ss​(​u​ max ​). Thus, it can only 
be that x < 1 and ​v​10​ = ​u​ max ​ hold in the solution of ​B​ss​(​u​ max ​). Note that (37) is 
the only constraint that causes x < 1. Therefore, (37) is binding from below in the 
solution of ​B​ss​(​u​ max ​). This yields ​v​o​ = 2q​u​ max ​ + (1 − 2q)​u​ max ​ − ​ x _ β ​ = ​u​aut​, so that  
x = β(​u​ max ​ − ​u​aut​). Substituting ​v​10​ = ​u​ max ​ and x = β(​u​ max ​ − ​u​aut​) into the objec-
tive of ​B​ss​(​u​ max ​), we obtain

	​ u​ max ​ = ​B​ss​(​u​ max ​) = p + β​u​ max ​ + (p(qk + 1) − 1)β(​u​ max ​ − ​u​aut​).

Simplifying and using β < ​  1 _ 
p(qk + 1) ​, we obtain ​u​ max ​ = ​u​aut​.

Case 2: p < ​ 2q − 1
 _ 2q  ​, i.e., below curve 2.

The coefficient of ​v​10​ is negative in the objective function. Also p < ​ 2q − 1
 _ 2q  ​ implies 

q > ​  1 _ 
2(1 − p) ​ > ​ 1 _ 2 ​, so the coefficient of ​v​10​ in (37) is negative as well. Consider the 

following subcases:

Case 2.1: p < ​  1 _ qk + 1 ​, i.e., below curve 1.

The coefficient of x is negative in the objective function. q varies between ​ 1 _ 2 ​ 

and 1. Curve 3 intersects the q-axis at q = ​ 1 + k
 _ 2k  ​. We will consider the following 

three subsubcases:

Case 2.1.1: q < ​ 1 + k
 _ 2k  ​, i.e., to the left of where curve 3 intersects the q-axis.

Note that 2q − ​ 1 _ k ​ ∈ (0, 1). So, ​( 2q − ​ 1 _ k ​ )​u + ​( 1 − 2q + ​ 1 _ k ​ )​​v​10​ ∈ [​u​aut​, u] if ​
v​10​ ∈ [​u​aut​, u]. Also, if (39) binds, ​v​o​ = ​( 2q − ​ 1 _ k ​ )​u + ​( 1 − 2q + ​ 1 _ k ​ )​​v​10​. Now, 
suppose that (39) is slack at the optimal solution. Then decrease x so that (39) 
binds. Then ​v​o​ ∈ [​u​aut​, u] holds because of the previous argument, and the objective 
increases. A contradiction. Therefore, (39) is binding at the optimal solution.

Now consider x > 0, ​v​10​ < u, and a decrease in x by ε > 0. In order to sat-
isfy β(u − ​v​10​) = kx, increase β​v​10​ by kε. This changes the objective by Δ 
= −( p(qk + 1) − 1)ε + (1 − 2q(1 − p))kε. Check that Δ > 0 ⇔ 
p > ​ k(2q − 1) − 1

 _ qk − 1  ​, which holds in this case. Therefore, check x = 0 and ​

v​10​ = u. All the constraints are satisfied when x = 0 and ​v​10​ = u. So, x = 0 and ​
v​10​ = u hold at the optimal solution for all u > ​u​ max ​. Then ​B​ss​(u) = p + βu, and  
​B​ss​(u) < u ⇔ u > ​u​aut​, so that we have ​u​ max ​ = ​u​aut​.
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Case 2.1.2: ​ 1 + k
 _ 2k  ​ ≤ q < ​q​∗​.

Suppose that (39) binds at the optimal solution. Then ​v​o​ = ​( 2q − ​ 1 _ k ​ )​u + 
​( 1 − 2q + ​ 1 _ k ​ )​​v​10​ is (weakly) decreasing in ​v​10​, and ​v​o​ = u when ​v​10​ = u. Sup-

pose ​ k + 1
 _ 2k  ​ < q. Then ​v​o​ ≤ u implies that ​v​10​ = ​v​o​ = u, which implies x = 0. 

Alternatively, suppose ​ k + 1
 _ 2k  ​ = q. Then ​v​o​ = u for all ​v​10​. If x > 0 and ​v​10​ < u, we 

can follow the argument above (for Case 2.1.1), and decrease x by ε > 0 and increase 

β​v​10​ by kε. We then satisfy (39) and induce Δ > 0, since p > ​ k(2q − 1) − 1
 _ qk − 1  ​ = 0.  

Thus, ​v​10​ = ​v​o​ = u and x = 0 again follows. So, in either case, ​B​ss​(u) = p + βu.
Now suppose that (39) is slack. If ​v​o​ = 2qu + (1 − 2q)​v​10​ − ​ x _ β ​ < u, we can 

increase the objective by decreasing x. So, ​v​o​ = u must hold. Then x = β(2q − 1) 
× (u − ​v​10​). Substituting x in ​B​ss​(u), and taking its partial derivative with respect 

to ​v​10​, we obtain ​ 
∂​B​ss​(u)
 _ ∂​v​10​

  ​ = pβ[−2k​q​2​ + qk + 1] > 0 since q < ​q​∗​. Also check that ​

v​10​ = u implies x = 0 and ​v​o​ = u. That is, all the constraints are satisfied. Therefore, ​
v​10​ = ​v​o​ = u and x = 0 hold in the solution of ​B​ss​(u). Again, ​B​ss​(u) = p + βu.

We obtain ​B​ss​(u) = p + βu in both cases. Hence, by taking the limit, we obtain ​
u​ max ​ = ​u​aut​ in this case.

Case 2.1.3: q ≥ ​q​∗​.

Suppose that (39) binds at the optimal solution of ​B​ss​(​u​ max ​). The same argument 
in Case 2.1.2 applies: ​v​o​ = ​( 2q − ​ 1 _ k ​ )​u + ​( 1 − 2q + ​ 1 _ k ​ )​​v​10​ is decreasing in ​v​10​, 
and ​v​o​ = u when ​v​10​ = u. Then ​v​o​ ≤ u implies that ​v​10​ = ​v​o​ = u, which implies 
x = 0. So, ​B​ss​(​u​ max ​) = p + β​u​ max ​, which yields ​u​ max ​ = ​u​aut​. We will rule out this 
possibility next.

Now suppose that (39) is slack. Then, by the same reasoning in Case 2.1.2, ​
v​o​ = u and x = β(2q − 1)(u − ​v​10​). Substituting these in ​B​ss​(u), we obtain 

​ 
∂​B​ss​(u)
 _ ∂​v​10​

  ​ = pβ[ − 2k​q​2​ + qk + 1] < 0 since q ≥ ​q​∗​. Therefore choose ​v​o​ = u, x  
= β(2q − 1)(u − ​v​10​), and ​v​10​ as small as possible subject to x ≤ 1 and 
​v​10​ ≥ ​u​aut​. Check that β(u − ​v​10​) ≤ kx is equivalent to q ≥ ​ 1 + k

 _ 2k  ​ which is satis-
fied in this case. So, either (i) ​v​10​ = ​u​aut​ and x = β(2q − 1)(u − ​u​aut​) ≤ 1, or  

(ii) x = 1 and ​v​10​ = u − ​  1 _ β(2q − 1) ​ ≥ ​u​aut​ holds in the solution. As we start with a 

large u, x = β(2q − 1)(u − ​u​aut​) will exceed 1, therefore situation (ii) will hold for 
large u.

Now check if situation (ii) holds in the limit. In situation (ii), we have

​B​ss​(u) = p + 2q(1 − p)βu + (p(qk + 1) − 1) + (1 − 2q(1 − p))β   ​( u − ​  1 _ 
β(2q − 1)

 ​ )​
	 = p + βu + λ,

where λ = (p(qk + 1) − 1) − ​ 1 − 2q(1 − p)
  _ 2q − 1  ​ = ​  p

 _ 2q − 1 ​(2k​q​2​ − qk − 1) ≥ 0 since 
q ≥ ​q​∗​.
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In the limit, we obtain ​u​∞​ = ​u​aut​ + ​  λ _ 
1 − β ​. So, ​v​10​ = ​u​∞​ − ​  1 _ β(2q − 1) ​ ≥ ​u​aut​  

is equivalent to β ≥ ​  β​ = ​  1 __  
1 + p(2k​q​ 2​ − qk − 1)

 ​. So, for β ≥ ​  β​, we obtain ​u​ max​  

= ​u​aut​ + ​  λ _ 
1 − β ​ and li​m ​q→1​ ​u​ max ​ = li​m ​q→1​ ​u​eff​. This also rules out binding (39). 

Note that ​  β​ < 1 ⇔ q > ​q​∗​.

Case 2.2:  p ≥ ​  1 _ qk + 1 ​, i.e., above curve 1.

In this case, the coefficients of x and ​v​10​ in the objective of ​B​ss​(u) are nonnega-
tive and negative, respectively. So, the objective function is nonincreasing in x and 
decreasing in ​v​10​.

Obviously, all the constraints cannot be slack at the optimal solution. Consider 
x < 1 and ​v​10​ > ​u​aut​. Decrease ​v​10​ by ε and increase x by β(2q − 1)ε. Then ​v​o​ 
remains unchanged. The left-hand side of (39) increases by βε. The right-hand side 
of (39) increases by k(2q − 1)βε. Note that q > ​ 1 + k

 _ 2k  ​ i.e., k(2q − 1) > 1 in this 
case. Therefore, (39) becomes slack and the objective increases. So (39) is slack in 
the optimal solution.

The same argument also implies that (i) if x < 1 then ​v​10​ = ​u​aut​, and (ii) if 
​v​10​ > ​u​aut​ then x = 1. Otherwise it would be possible to increase the objective as 
above.

In situation (i), x < 1 would also imply ​v​o​ = ​u​aut​. Otherwise, a small increase in 
x would increase the objective without violating any constraint. Similarly, in situ-
ation (ii), ​v​10​ > ​u​aut​ would also imply ​v​o​ = u. Otherwise, a small decrease in ​v​10​ 
would increase the objective without violating any constraint, since (39) is slack.

In situation (i), solving x from ​v​o​ = 2qu + (1 − 2q)​v​10​ − ​ x _ β ​, we get x  
= 2qβ(u − ​u​aut​). Then x < 1 is equivalent to u − ​u​aut​ < ​  1 _ 

2qβ ​. In situation 

(ii), solving ​v​10​ from ​v​o​ = 2qu + (1 − 2q)​v​10​ − ​ x _ β ​ ∈ [​u​aut​, u], we obtain ​v​10​  
= u − ​  1 _ β(2q − 1) ​. Then ​v​10​ > ​u​aut​ is equivalent to u − ​u​aut​ > ​  1 _ β(2q − 1) ​. Since ​  1 _ 

2qβ ​ 

< ​  1 _ β(2q − 1) ​, u − ​u​aut​ < ​  1 _ 
2qβ ​ and u − ​u​aut​ > ​  1 _ β(2q − 1) ​ cannot hold simultaneously. 

For large u, u − ​u​aut​ > ​  1 _ β(2q − 1) ​ holds. Thus, for large u, by setting x = 1, ​v​o​ = u 

and ​v​10​ = u − ​  1 _ β(2q − 1) ​, we get ​B​ss​(u) = p + βu + λ and ​u​∞​ = ​u​aut​ + ​  λ _ 
1 − β ​ as 

above. Also, ​v​10​ = ​u​∞​ − ​  1 _ β(2q − 1) ​ ≥ ​u​aut​ is equivalent to β ≥ ​  β​ as above. So, for 

β ≥ ​  β​, we obtain ​u​ max​ = ​u​aut​ + ​  λ _ 
1 − β ​ and li​m ​q→1​ ​u​ max ​ = li​m ​q→1​ ​u​eff​ .

I. Characterization of Optimal Hybrid Equilibria

We begin with the following lemma:

Lemma 8: In any implementation of an optimal hybrid equilibrium, (2) and (3) 
bind and

(40)	 u = p + β  ​u​o​[1 − p(1 + qk)] + pβ[qk  ​
_
 u​ + ​u _​ ].
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Proof:
Suppose (2) is slack. If x = y < 1, then we can raise x and y by a small amount 

while keeping ​u​o​ = ​v​o​ fixed. This new implementation satisfies all constraints 
and generates a higher utility, contradicting the hypothesis that the original speci-
fication implemented an optimal hybrid equilibrium. Likewise, if x = y = 1 and ​
u​o​ = ​v​o​ < u, then we can obtain a contradiction by increasing ​u​o​ = ​v​o​ a small 
amount while keeping x = y = 1. Finally, if ​u​o​ = ​v​o​ = u and x = y = 1, then 
u < ​_ u​ − 1/β < ​_ u​ − 1/(β + ​β​∗​) = (​_ u​ + ​u _​)/2 ≡ ​ u ​, where the first inequality fol-
lows from the supposition that (2) is slack. A contradiction is now obtained, since 
players may implement a hybrid equilibrium that generates the higher utility ​̃ u ​, 
by using the implementation of an HSSGL that is specified in Proposition 2 when 
(u, v) = (​̃ u ​, ​ u ​) = (​u​o​, ​v​o​). (See also Corollary 1). Thus, (2) is binding, and by sym-
metry so is (3). Next, given that (2) and (3) bind, we may substitute for x and y in 
(6) and thereby derive (40).

Our next finding indicates that the characterization of optimal hybrid equilibria is 
sensitive to the sign of 1 − p(1 + qk).

Lemma 9: Suppose {x, ​u​o​} implements u in an optimal hybrid equilibrium. If 
1 < p(1 + qk), then x = 1, ​u​o​ = ​_ u​ − 1/β and

(41)	 u = [  p(qk + 1) −1 ] + p + β  (1 − p)​_ u​ + β  p​u _​.

If 1 > p(1 + qk), then x = ​  β _ β + ​β  ​∗​ ​ and ​u​o​ = u = ​ u ​. If 1 = p(1 + qk), then u = ​ u ​.

Proof:
First, suppose {x, ​u​o​} implements u in an optimal hybrid equilibrium, and that 

1 < p(1 + qk). Using (40), we see that u is greater when ​u​o​ is lower. Lemma 8 
indicates that (2) must bind; thus, it is necessary that ​u​o​ = ​_ u​ − x/β. Suppose x < 1. 
We then have that ​u​o​ = ​_ u​ − x/β > ​_ u​ − 1/β ≥ ​u _​ ≥ ​u​aut​  , where the weak inequali-
ties are strict if β > ​β​  ∗​. With x < 1 and ​u​o​ > ​u​aut​, we may thus increase x = y by ε 
and decrease ​u​o​ = ​v​o​ by ε/β. All constraints remain satisfied. Using (6), we see that 
utility is increased by −pε + pqkε + (1 − 2p)β(−ε/β) = ε[  p(qk + 1) − 1] > 0, 
a contradiction. Thus, if {x, ​u​o​} implements u in an optimal hybrid equilibrium, then 
x = 1 and ​u​o​ = ​_ u​ − 1/β. Using (40), we may then confirm that u is given as in (41).

Second, suppose {x, ​u​o​} implements u in an optimal hybrid equilibrium and that 
1 > p(1 + qk). As noted in the proof of Lemma 8, we may implement a hybrid 
equilibrium that generates the payoff ​̃ u ​. Thus, it is necessary that u ≥ ​ u ​. Suppose 
u > ​ u ​. Since (2) and (3) bind in the implementation of ​̃ u ​, we may reason as in the 
proof of Lemma 8 and conclude that ​̃ u ​ satisfies

(42)	​  u ​ = p + β ​ u ​[1 − p(1 + qk)] + pβ[qk​
_
 u​ + ​u _​ ].

Likewise, u and ​u​o​ must satisfy (40). Subtracting (42) from (40) and using 
β[1 − p(1 + qk)] ∈ (0, 1), we obtain u − ​ u ​ = β[1 − p(1 + qk)](​u​o​ − ​ u ​) < 
​u​o​ − ​ u ​, and so it follows that ​u​o​ > u. This contradicts the requirement that ​u​o​  
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= ​v​o​ ∈ [​u​aut​, u]. It follows that the optimal hybrid equilibrium utility is ​̃ u ​, when 
1 > p(1 + qk). Correspondingly, we then have x = β (​_ u​ − ​ u ​) = ​  β _ β + ​β​∗​ ​.

Finally, suppose {x, ​u​o​} implements u in an optimal hybrid equilibrium and that 
1 = p(1 + qk). Using (40), we see that u is then independent of ​u​o​, when (2) binds. 
Using (40), the corresponding payoff is u = p + pβ[qk​

_
 u​ + ​u _​ ]. By (42), when 

1 = p(1 + qk), u = ​ u ​. 

As discussed in the text, the key intuition is that a greater symmetric punishment 
is costly when experienced but also generates an increase in the size of the invest-
ment. The net effect is positive if 1 < p(qk + 1).

We now give the proof of Proposition 6.

Proof of Proposition 6:
Suppose 1 < p(1 + qk). The proposed implementation satisfies all constraints, 

provided that ​u​o​ = ​_ u​ − 1/β ∈ [​u​aut​, u], where u is given in (41). To this end, we 
observe that ​u​o​ = ​_ u​ − 1/β ≥ ​u _​ ≥ ​u​aut​, where the weak inequalities are strict if 
β > ​β​  ∗​. Next, ​u​o​ = ​_ u​ − 1/β < ​_ u​ − 1/(β + ​β​  ∗​) = ​ u ​ < u. When 1 ≥ p(1 + qk), 
we may implement ​̃ u ​ by using x = ​  β _ β + ​β  ​∗​ ​ and ​u​o​ = ​ u ​, as explained in the proof of 
Lemma 8.

J. The Pareto Frontier Fails to be Renegotiation-Proof  
when Immediate Reciprocity is Not Available

We now show that, in our discrete-time model when immediate reciproc-
ity is not available, the Pareto frontier is not self-generating and thus fails to be 
renegotiation-proof.

Proposition 10: Suppose that immediate reciprocity is not available, 
p(qk + 2) > 2 and q ≤ ​  1 _ 

2(1 − p) ​. Then the Pareto frontier is not renegotiation-proof 

for β ∈ [ ​β​  ∗​, ​  β​ ] ≠ ⌀, where

	​   β​ = ​ 
qk
 __  

2qk − p(qk + 1)
 ​.

Proof:
Suppose that the Pareto frontier (PF) is renegotiation-proof (RP). Consider the 

symmetric point, (​u​PF​, ​u​PF​) at the intersection of the PF and the 45o line. We first 
show that x = y = 1 at the symmetric point of the PF. Suppose to the contrary that 
x < 1 at the symmetric point. Consider I​C​ x​ a​ with r = 0:

	 1 − x + β​u​a​ ≥ 1 + β​u​o​.

By RP, we have ​u​o​ = ​u​PF​. If I​C​ x​ a​ is slack, x and y can be increased, which in turn 
increases ​u​PF​, a contradiction. So I​C​ x​ a​ must be binding. Increase x and y by ϵ and 
decrease ​u​o​ and ​v​o​ by ​ ϵ _ β ​ Then the total change in ​u​PF​ is given by

	 Δ = −pϵ + pqkϵ − (1 − 2p)ϵ.
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Now Δ > 0 if and only if pqk + p > 1 or equivalently ​   β​ = ​  1 _ 
p(qk + 1) ​ < 1, which 

is implied by p(qk + 2) > 2. So x = 1 at the symmetric point of the PF. In the 
absence of immediate reciprocity, the maximum feasible payoff for a player is given 

by ​ 
pqk +p​( 1 − ​ 1 _ 

qk
 ​ )​
  _ 

1 − β  ​, taking into account the other player’s individual rationality con-

straint (IR). This payoff is generated for a player, say a, when b invests all of $1, 
and a invests only $​ 1 _ qk ​ in order to meet b’s IR. So we obtain an upper bound of 

​ 
pqk +p​( 1 − ​ 1 _ 

qk
 ​ )​
  _ 

1 − β  ​ for ​u​a​. Replacing that upper bound, x = 1 and ​u​o​ = ​u​PF​ in I​C​ x​ a​ above, 

we obtain

(43)	 β​u​PF​ ≤ β  ​ 
pqk + p​( 1 − ​ 1 _ qk ​ )​

  __  
1 − β

 ​  − 1.

Note that the parameters fall into region ​I​2​. When β > ​   β​ = ​  1 _ 
p(qk + 1) ​, the maximum 

payoff that can be generated by SSE in region ​I​2​ is

(44)	​ u​SSE​ = ​ 
p + p(qk + 1) − 1

  __  
1 − β

 ​ .

If the right-hand side of (43) is less than β times the maximum value in (44), we 
obtain a contradiction, as ​u​PF​ ≥ ​u​SSE​ must hold. Check that

	 β  ​ 
pqk + p​( 1 − ​ 1 _ qk ​ )​

  __  
1 − β

 ​  − 1 < β ​ 
p + p(qk + 1) − 1

  __  
1 − β

 ​

is equivalent to β < ​  β​. Note that

	​ β  ​∗​ = ​  1 __  
1 + p(qk − 1)

 ​ < ​   β​ = ​  1 _ 
p(qk + 1)

 ​ .

Also,

	​    β​ = ​  1 _ 
p(qk + 1)

 ​ < ​  β​ = ​ 
qk
 __  

2qk − p(qk + 1)
 ​

if and only if

	 0 < p + qk(pqk − 2(1 − p)),
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which is satisfied if p(qk + 2) > 2. For large values of k, there exists p and q such 
that p(qk + 2) > 2 and the constraints of ​I​2​, q ≤ ​  1 _ 

2(1 − p) ​ and p(qk + 1) > 1, are 

all satisfied. In that case, there exists β ∈ [​β  ​∗​, ​  β​ ] ≠ ⌀ and we obtain a contradiction 
of ​u​PF​ < ​u​SSE​ for such β, so the PF cannot be RP for small values of β when immedi-
ate reciprocity is not available.
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