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Abstract

We analyze the Baron and Myerson (1982) model of regulation under the
restriction that transfers are infeasible. Extending techniques from the dele-
gation literature to incorporate an ex-post participation constraint, we report
sufficient conditions under which optimal regulation takes the form of price-cap
regulation. We establish conditions under which the optimal price cap is set at
a level such that no types are excluded and show that exclusion of higher cost
types can be optimal when these conditions fail. We also provide conditions for
the optimality of price-cap regulation when an ex post participation constraint
is present and exclusion is infeasible.

1 Introduction

The optimal regulatory policy for a monopolist is influenced by many considerations,

including the possibility of private information, the objective of the regulator, and
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the feasibility and efficiency of transfers. Armstrong and Sappington (2007) survey

the nature of optimal regulation in different settings and discuss as well the design

of practical policies, such as price-cap regulation, that are frequently observed in

practice. As they emphasize, an important question is whether practical policies per-

form well in realistic settings where private information may be present and transfer

instruments may be limited.

In a seminal paper, Baron and Myerson (1982) consider the optimal regulation of

a single-product monopolist with private information about its costs of production.

In their model, a regulatory policy indicates, for every possible cost type, whether

the monopoly is allowed to produce at all and, if so, the output and corresponding

price that it selects and the transfer from consumers that it receives (where a nega-

tive transfer is a tax). A regulatory policy is feasible if it is incentive compatible and

satisfies an ex post participation constraint. The regulator chooses over feasible reg-

ulatory policies to maximize a weighted social welfare function that weighs consumer

surplus no less heavily than producer surplus.1

In a standard version of the Baron-Myerson model, the monopolist faces a com-

monly known and non-negative fixed cost and is privately informed as to the level

of its constant marginal cost, where the marginal cost has a continuum of possible

types and is drawn from a commonly known distribution function. If the regulator

gives greater welfare weight to consumer surplus, then the optimal regulatory policy

defines a non-decreasing price schedule for active types with a positive mark up for all

but the lowest cost type. Production is permitted only for types such that consumer

surplus under the optimal pricing rule weakly exceeds the fixed cost of production.

In this paper, we characterize optimal regulatory policy in the Baron-Myerson

model with constant marginal costs when transfers are infeasible. Our no-transfers

assumption contrasts sharply with Baron and Myerson’s assumption that all (positive

and negative) transfers are available. We motivate our no-transfers assumption in

three ways. First, regulators often do not have the authority to explicitly tax or pay

subsidies.2 Second, while transfers from consumers to firms may also be achieved via

1An alternative approach is developed by Laffont and Tirole (1993, 1986). They assume that the
regulator maximizes aggregate social surplus and that transfers entail a social cost of funds.

2For further discussion, see, e. g., Armstrong and Sappington (2007, p. 1607), Baron (1989,
p. 1351), Church and Ware (2000, p. 840), Joskow and Schmalensee (1986, p. 5), Laffont and Tirole
(1993, p. 130) and Schmalensee (1989, p. 418).
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access fees in two-part tariff schemes, the scope for such transfers may be limited in

practice, particularly when universal service is sought for heterogeneous consumers.3

Finally, in other settings, the scope for a positive access fee may be limited by the

possibility of consumer arbitrage, while the scope for a negative access fee may be

limited by the prospect of strategic consumer behavior designed to capture “sign-up”

bonuses. In view of these considerations, we remove the traditional assumption that

all transfers are available and consider the opposite case in which all transfers are

infeasible. Specifically, we assume that the regulated firm is restricted to a uniform

price (i.e., linear pricing).4 As our main finding, we report sufficient conditions under

which price-cap regulation emerges as the optimal regulatory policy.

As mentioned above, price-cap regulation is a common form of regulation. The

appeal of price-cap regulation is often associated with the incentive that it gives to

the regulated firm to invest in endogenous cost reduction.5 By contrast, we establish

conditions for the optimality of price-cap regulation in a model in which costs are

private and exogenous. Our no-transfers assumption is critical: price-cap regulation

is not optimal in the standard Baron-Myerson model with transfers. Our finding thus

indicates that this practical regulatory policy may perform not just well but optimally

when a regulator faces a privately informed monopolist and transfers are infeasible.

To develop this finding, we consider a “regulator’s problem” in which the regula-

tor chooses a menu of permissible outputs, with the understanding that the output

choice intended for a monopolist with a given cost type must be the best choice for

the monopolist relative to all other permitted output choices. In addition to this

incentive compatibility constraint, the regulator faces an ex post participation, or

individual rationality (IR), constraint: if the regulator seeks a positive output from

a monopolist with a given cost type, then the monopolist must earn more by pro-

ducing this output than by shutting down and avoiding the non-negative fixed cost

of production. Importantly, the regulator may choose a menu of permissible outputs

such that, for some cost types, the monopolist elects to produce zero output and thus

3As Laffont and Tirole (1993, p. 151) explain, “optimal linear pricing is a good approximation to
optimal two-part pricing when there is concern that a nonnegligible fixed premium would exclude
either too many customers or customers with low incomes whose welfare is given substantial weight
in the social welfare function.”

4In this respect, we follow the lead of Schmalensee (1989). Schmalensee (1989, p. 418) provides
additional motivation for the practical relevance of linear pricing schemes in regulatory settings.

5See, for example, Armstrong and Sappington (2007, p. 1608) and the references cited therein.
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earn a profit of zero. As in the original Baron-Myerson model, the regulator may thus

design the regulatory policy so as to “exclude” some cost types from production.

The IR constraint plays an important role in our analysis. If we were to ignore

this constraint, then the regulator’s problem would take the form of a traditional

delegation problem and fit into the framework of Amador and Bagwell (2013). We

could then use the sufficiency theorems developed in that paper and provide conditions

under which a simple price cap (i.e., a quantity floor) is optimal. We show, however,

that the IR constraint in fact would be violated for higher cost types when this simple

price cap is used.

We consider instead a price-cap allocation where the cap is placed at a price level

such that a threshold cost type earns zero profit and is thus indifferent to shut down.

No exclusion occurs if the threshold cost type corresponds to the highest cost type

in the full support, while exclusion occurs when the threshold cost type falls below

the highest possible cost type. Within the set of non-excluded cost types, higher

cost types pool at the price cap, whereas lower cost types may select their monopoly

prices. It is also possible that the price cap falls below the monopoly price for the

lowest possible cost type, in which case all non-excluded cost types pool at the price

cap. The central task of our analysis is to identify sufficient conditions under which

the described price cap with possible exclusion is optimal. We also seek to determine

sufficient conditions that indicate when actual exclusion does or does not occur.

To establish our results, we proceed in three main steps. First, we consider the

“regulator’s truncated problem,” wherein the regulator allocates production for cost

types up to an exogenous upper-bound cost type and is not allowed to exclude any

types in this truncated set. The upper-bound cost type can be fixed at any value

that is above the lowest possible cost type and at or below the highest possible

cost type in the full support. We then obtain sufficient conditions under which the

optimal allocation for the regulator’s truncated problem is a price cap set at a level

such that the upper-bound cost type earns zero profit and is thus indifferent between

producing or not. Second, we argue that this truncated allocation remains feasible

when extended to the full support of possible costs if cost types above the upper-

bound cost type are excluded (assigned zero output). Finally, we characterize the

optimal level of exclusion. This exercise amounts to a single variable optimization
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problem defined over the upper-bound, or threshold, cost type.

Our first proposition establishes a general set of sufficient conditions under which

the described price-cap allocation solves the regulator’s truncated problem. We then

provide a second proposition which establishes that, if the sufficient conditions for

our first proposition hold for any upper-bound cost type, then a price-cap allocation

with potential exclusion is optimal within the set of all feasible allocations for the

regulator’s problem. A key ingredient in making this argument is that the optimal

price-cap allocation is such that the threshold cost type is indifferent to shut down.

We also provide several results that facilitate the application of our propositions.

Three approaches are developed. First, we show that our sufficient conditions hold

if the density is non-decreasing over the full support and if a “relative concavity”

condition holds that concerns the relative curvature of the consumer surplus and

profit functions, with each expressed as a function of quantity. The relative concavity

condition is more likely to hold when the ratio of the concavity of the consumer

surplus function to that of the profit function is higher. Second, we identify a family

of demand functions under which the sufficient conditions for our propositions hold

if a simple inequality is satisfied. The inequality condition holds when the density

is non-decreasing over the full support, but it can hold as well when the density is

decreasing over part or all of the full support. To illustrate the power of this approach,

we show that the family includes linear demand, constant elasticity demand and log

demand functions, and we derive and interpret the corresponding inequality condition

for each of these examples. The third approach is to check the sufficient conditions

for our propositions directly. We illustrate this approach for an example with an

exponential demand function.

Finally, we identify conditions under which actual exclusion does or does not occur,

respectively. Our third proposition establishes that no exclusion is optimal under a

general set of conditions; specifically, if the density is non-decreasing over the full

support and the consumer surplus function is weakly concave, and if the sufficient

conditions for our first proposition hold for any upper-bound cost type, then the

optimal regulatory policy entails no exclusion and a price cap set at a price level such

that the IR constraint for the highest cost type is binding. Thus, optimal regulation

then takes the form of a standard second-best price cap that delivers zero profit for
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the highest cost type. We note that the consumer surplus function is weakly concave

in quantity for the log demand and constant elasticity demand examples.

We also analyze the linear demand example. The consumer surplus function as-

sociated with this demand function is strictly convex, and so our third proposition

cannot be applied. In our fourth and final proposition, we show that, if the distribu-

tion of cost types is uniform, the social planner maximizes aggregate social welfare,

and the fixed cost of entry is strictly positive, then (a) the price cap is below the

monopoly price of the lowest cost type and thus induces pooling among all non-

excluded types, and (b) some higher cost types must be excluded, provided that not

all types would pool at the cap were no exclusion to occur (i.e., provided that the sub-

monopoly price that generates zero profit for the highest possible cost type is above

the monopoly price of the lowest possible cost type). This proposition demonstrates

that exclusion of higher cost types can be optimal in some settings.6,7

The described results characterize optimal regulatory policy for market settings

in which exclusion for some cost types is feasible. Our results thus directly apply

when the monopolist provides an inessential service for a given market or region.

Since Baron and Myerson (1982) also focus on settings where exclusion is feasible,

our findings characterize how their analysis extends when transfers are infeasible.

We are also interested in the “no-exclusion” scenario, wherein the regulator must

ensure that the monopolist earns non-negative profit while providing positive output

under all cost realizations. This scenario may be relevant for a monopolist that

provides essential services with poor substitution alternatives. To characterize the

optimal regulatory policy for this scenario, we refer to our first proposition for the

special case in which the upper-bound cost type equals the highest cost type in the

full support. Our first proposition then provides conditions under which optimal

regulation for the no-exclusion scenario takes the form of a price-cap policy, where

the price cap is set at the second-best level that generates zero profit for a monopolist

with the highest possible cost type. Likewise, we can facilitate the application of our

results to this scenario by using the three approaches described above.

6See Armstrong (1996) for an analysis of optimal exclusion in the different context of a model of
multiproduct nonlinear pricing when the type space is multidimensional.

7The setting of linear demand and a uniform distribution is often treated in the literature. Alonso
and Matouschek (2008) and Baron and Myerson (1982) illustrate their findings using this example.
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Our work is related to research on optimal delegation. The delegation literature

begins with Holmstrom (1977), who considers a setting in which a principal faces a

privately informed and biased agent and in which contingent transfers are infeasible.

The principal then selects a set of permissible actions from the real line, and the

agent selects his preferred action from that set after privately observing the state of

nature.8 A key goal in this literature has been to identify general conditions under

which the principal optimally defines the permissible set as an interval. Alonso and

Matouschek (2008) consider a setting with quadratic utility functions and provide

necessary and sufficient conditions for interval delegation to be optimal. Extending

the Lagrangian techniques of Amador et al. (2006), Amador and Bagwell (2013)

consider a general representation of the delegation problem and establish necessary

and sufficient conditions for the optimality of interval delegation.9

Our analysis of the regulator’s truncated problem builds on the Lagrangian meth-

ods used by Amador and Bagwell (2013), but a novel feature of the current paper

is that the analysis is extended to include an ex post participation constraint.10 A

further distinction of the current paper is that, in our analysis of the regulator’s

problem, we allow for the possibility of excluded types and show further that actual

exclusion can be optimal. In that case, the regulation contract can be understood

as providing a disconnected set of quantities, namely, a quantity of zero for excluded

types combined with an interval of positive quantities for non-excluded types. The

optimal regulation contract is then clearly distinct from an interval allocation.

Alonso and Matouschek (2008) were the first to argue that the monopoly regula-

8A large literature follows Holmstrom’s work. See, for example, Amador and Bagwell (2012),
Amador and Bagwell (2020), Amador et al. (2018), Amador et al. (2006), Ambrus and Egorov
(2017), Armstrong and Vickers (2010), Burkett (2016), Frankel (2014), Frankel (2016), Guo (2016),
Koessler and Martimort (2012), Martimort and Semenov (2006), Melumad and Shibano (1991) and
Mylovanov (2008). Related themes also arise in repeated games with private information; see Athey
et al. (2004), Athey et al. (2005) and Halac and Yared (2019).

9We note that a cap can be understood as a form of interval delegation, in which the maximum
(minimum) action is defined by the cap (the lowest “flexible” choice for any agent type).

10Amador and Bagwell (2020) also build on the Lagrangian methods used by Amador and Bag-
well (2013). Amador and Bagwell (2020) provide sufficient conditions under which money burning
expenditures are used in an optimal delegation contract. Building on work by Ambrus and Egorov
(2017), they also consider an application with an ex ante participation constraint under the assump-
tion that ex ante (non-contingent) transfers are feasible. The participation constraint can then be
addressed using standard methods. In the present paper, by contrast, the participation constraint
must hold ex post and cannot be addressed using standard methods since transfers are infeasible.
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tion problem can be understood as a delegation problem. As an application of their

analysis, they study optimal regulation when costs are privately observed by the

regulated firm and transfers are infeasible, and they report conditions under which

price-cap regulation is optimal. Our analysis differs in two ways. First, Alonso and

Matouschek assume that the monopolist produces regardless of its cost type and do

not include a participation constraint. Indeed, their price-cap solution would violate

an ex post participation constraint. We include an ex post participation constraint,

allow for exclusion, and consider as well the setting in which the ex post participa-

tion constraint holds but exclusion is infeasible. When exclusion is not optimal or

is infeasible, the optimal price cap in our model is placed at a higher level than in

their analysis. Second, Alonso and Matouschek assume that demand is linear and the

regulator maximizes aggregate social surplus. We consider a more general family of

demand functions and regulator objectives, and we provide conditions under which

exclusion is optimal when demand is linear.

Recent work by Kolotilin and Zapechelnyuk (2019) is also related. They examine

optimal delegation in a “linear delegation” framework and, as an application, provide

conditions under which a price cap is the optimal regulatory policy in a delegation

setting with a participation constraint. The two papers are complementary. We

highlight three distinct features of our analysis. First, following Baron and Myerson

(1982), we assume that the monopolist has a non-negative fixed cost; by contrast,

Kolotilin and Zapechelnyuk (2019) build from the assumption that the monopolist has

no fixed costs. Second, the linear delegation framework corresponds in the regulation

setting to the family of demand functions that we identify under which the sufficient

conditions for our propositions hold if a simple inequality is satisfied; however, as

noted above, we can go beyond this family and check the sufficient conditions for our

propositions directly, as we do for the exponential demand function. Third, the two

papers employ different proof methods: we analyze the delegation problem directly

using a Lagrangian approach, whereas Kolotilin and Zapechelnyuk (2019) analyze the

delegation problem by drawing a novel link to the literature on Bayesian persuasion.

Additional work in this area has explored alternative delegation environments

where similar ex-post participation constraints naturally arise. See for example,

Kartik et al. (2021), Saran (2021) and Zapechelnyuk (2020), who consider applica-
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tions to veto bargaining, monopolistic screening and quality certification, respectively.

Methodologically, one key difference is that the main results in these papers are ob-

tained for a payoff specification for the principal that is independent of the private

information parameter. This restriction is not appropriate for our regulation appli-

cation, where the regulator’s payoff function directly depends on the regulated firm’s

cost level, and as a consequence, we do not impose this restriction in our analysis.

The paper is organized as follows. Section 2 sets up the regulator’s problem,

and Section 3 examines cap allocations. Section 4 then focuses on the regulator’s

truncated problem and develops general sufficient conditions for the optimality of a

cap allocation. Section 5 considers the global optimality of the cap allocation and

develops further results and approaches that facilitate the application of our findings.

Section 6 identifies conditions under which actual exclusion does or does not occur.

Section 7 concludes. The Appendix contains remaining proofs.

2 The Regulator’s Problem

In this section, we present our basic model and formally define the problem that

confronts the regulator. We also identify the bias in the monopolist’s unrestricted

output choice.

We consider a monopolist facing an inverse demand function given by P (q) where

q is the quantity produced. The production quantity q resides in the set Q ≡ [0, qmax],

which is an interval of the real line with non-empty interior. The function P (q) is

well-defined and finite for all q ∈ (0, qmax].

We assume the monopolist faces a constant marginal cost of production γ as well

as a fixed cost σ ≥ 0. The marginal cost γ is private information to the monopolist

and is distributed over the support Γ = [γ, γ] where γ > γ > 0 with a differentiable

cumulative distribution function F (γ). The associated density, f(γ) ≡ F ′(γ), is

strictly positive and differentiable.

We assume that the regulator has no access to transfers or taxes, and can only

impose restrictions on the quantity produced by the monopolist. As discussed in the

Introduction, our no-transfers assumption means that the regulator cannot impose

taxes or subsidies, and it implicitly implies as well that the monopolist cannot use
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an access fee. We thus assume that the monopolist selects a uniform price, with

the regulator determining the feasible menu of such prices through the selection of a

feasible menu of quantities. We allow that the regulator’s objective is to maximize

a weighted social welfare function in which profits receive weight α ∈ (0, 1]. The

regulator maximizes aggregate social surplus when α = 1 and gives greater weight to

consumer interests when α < 1.

We impose the following assumptions on primitives:

Assumption 1. We impose the following assumptions:

(a) P (q) is twice-continuously differentiable for q ∈ (0, qmax] with P ′(q) < 0 < P (q).

(b) limq↓0 P (q) > γ and P (qmax) < γ.

(c) There exist functions b(q), v(q), and w(γ, q) which are twice-continuously differ-

entiable for q ∈ (0, qmax] and that satisfy

b(q) ≡ P (q)q,

v(q) ≡
∫ q

0

P (z)dz − P (q)q,

w(γ, q) ≡ −γq + b(q) +
1

α
v(q),

with limq↓0 b(q) = 0 and limq↓0 v(q) = 0. We define b(0) = v(0) = w(γ, 0) = 0.

(d) b′′(q) < 0 and wqq(γ, q) = b′′(q) + 1
α
v′′(q) ≤ 0 for all q ∈ (0, qmax].

(e) wq(γ, qmax) < 0.

In this assumption, b(q) defines the total revenue for the monopolist, v(q) repre-

sents consumer surplus, and w(γ, q) represents the welfare to the regulator (gross of

the fixed cost).11 Using Assumption 1, we obtain that v′(q) = −qP ′(q) > 0 for all

q > 0. Similarly, using Assumption 1, we have that

wqq(γ, q) = b′′(q) +
1

α
v′′(q)

= P ′′(q)q + 2P ′(q)− 1

α
[P ′′(q)q + P ′(q)] ≤ 0 for q > 0.

11Our notation here is designed to facilitate easy comparison with Amador and Bagwell (2013).
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Notice that P ′(q) < 0 implies that w is strictly concave when α = 1. We make no

assumption as regards the sign of v′′(q). If marginal revenue is steeper than demand

(i.e., b′′(q) < P ′(q)), then v′′(q) > 0.12 For example, as we discuss below, v′′(q) > 0

when demand is linear, and v′′(q) < 0 when demand exhibits constant elasticity.

Assumption 1 also includes various regularity conditions. According to part (b),

the inverse demand function exceeds the highest marginal cost for quantities that are

sufficiently close to zero and falls below the lowest marginal cost for quantities that

are sufficiently close to qmax. Part (e) ensures that the welfare-maximizing quantity

is below qmax, even when marginal cost is at its lowest possible value.

We envision the regulator as choosing a menu of permissible outputs, with the

understanding that a monopolist with cost type γ selects its preferred output from

this menu. Thus, if the regulator seeks to assign an output q(γ) to a monopolist with

type γ, then an incentive compatibility constraint must be satisfied. As well, if the

regulator seeks a positive output from a monopolist with type γ, then type γ must

earn more by producing q(γ) > 0 than by shutting down and avoiding the fixed cost

of production, σ ≥ 0.13 We allow that the regulator may choose a menu of permissible

outputs such that some types produce zero output, incur no fixed cost, and thus earn

a profit of zero. That is, the regulator may “exclude” some types from production.

The regulator’s problem can then be written as follows:

(P1) max
q:Γ→Q

∫
Γ

(w(γ, q(γ))− 1(q(γ))σ) dF (γ) subject to:

γ ∈ arg max
γ̃∈Γ
−γq(γ̃) + b(q(γ̃))− 1(q(γ̃))σ for all γ ∈ Γ

0 ≤ −γq(γ) + b(q(γ))− 1(q(γ))σ, for all γ ∈ Γ

where 1(·) is an indicator function such that 1(q) = 1 if q > 0 and 1(q) = 0 if q = 0.

The first constraint in this problem is the incentive compatibility constraint, while

the second constraint is the ex post participation or individual rationality (IR) con-

straint. The IR constraint requires that if a type produces, it needs to earn enough

profit to cover its fixed cost, σ. The constraints also allow for the possibility of types

12This condition holds if the demand function is log-concave but fails otherwise.
13We have assumed that the fixed cost σ is independent of γ. We have done so mostly for simplicity,

as it is possible to generalize our main results (i.e., Propositions 1 and 2) to the case where σ(γ) is
a non-decreasing and non-negative function of γ.

11



for which q(γ) = 0, since the IR constraint holds when q(γ) = 0. We say that an

allocation is feasible if it satisfies both of these constraints.

The flexible allocation. Before characterizing the solution to the regulator’s prob-

lem, it is convenient to define qf (γ) as the allocation that a monopolist would choose

if it were forced to produce but were otherwise unrestricted. To this end, we let

π(γ, q) ≡ −γq + b(q)

be the monopolist’s profit function (gross of the fixed cost), and we then define the

monopolist’s flexible allocation as

qf (γ) ≡ arg max
q∈Q

π(γ, q).

The flexible allocation is simply the monopoly output as a function of the monopolist’s

cost type. The associated first-order condition is given by b′(q)− γ = 0.

We note that the limq→0 P (q) > γ and b(0) = 0 imply that qf (γ) > 0. Since

P (qmax) < γ, we know that qf (γ) < qmax. With these boundary results in place, we

have that qf (γ) is differentiable, with q′f (γ) = 1/b′′(qf (γ)) < 0 and qf (γ) ∈ (0, qmax)

for all γ ∈ Γ. Note as well that P (qf (γ)) > γ and thus π(γ, qf (γ)) = −γqf (γ) +

b(qf (γ)) > 0 for all γ ∈ Γ.

We further assume that it is optimal for all types to produce if given the ability

to set their monopolist quantity:

Assumption 2. For all types γ ∈ Γ, π(γ, qf (γ)) > σ.

An implication of Assumption 2 is that, for any given cost type, the regulator’s welfare

is higher when a monopolist with that cost type sets its monopoly output than when it

shuts down and produces zero output. Thus, if the solution to the regulator’s problem

excludes a given cost type from production, then it must be that the regulator is able

to improve the allocation for other cost types through this means.

Given the interiority of qf (γ), we may use the associated first-order condition and

establish the following relationship: for all γ ∈ Γ,

wq(γ, qf (γ)) =
1

α
v′(qf (γ)) = − 1

α
P ′(qf (γ))qf (γ) =

1

α
[P (qf (γ))− γ] > 0
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Thus, the model embodies downward or negative bias : the agent’s (i.e., the monopo-

list’s) preferred q is too low from the principal’s (i.e., the regulator’s) perspective.

The presence of negative bias suggests the possibility of a solution that imposes

a lower bound on q for higher types (or equivalently a cap on the price for higher

types). But note also that the unrestricted monopolist profits are decreasing in γ;

thus, it is also possible that such a regulatory restriction could exclude higher-cost

types from producing, if they are then unable to cover their fixed cost of production.

We show now that, if any exclusion occurs, then the excluded types are always

defined by a threshold type, γt ∈ Γ:

Lemma 1. In any feasible allocation q(·), there exists a cut-off γt ∈ [γ, γ] such that

q(γ) = 0 for γ > γt and q(γ) > 0 for γ < γt. In addition, if γt ∈ (γ, γ), then

−γtq(γt) + b(q(γt)) = σ.

Proof. In the appendix.

The proof uses the property that an incentive compatible allocation for such a model

must be monotonic, which in turn ensures the existence of the cut-off value γt ∈ [γ, γ].

If we were to ignore the IR constraint, the regulator’s problem would fit into the

framework of Amador and Bagwell (2013), and we could use the sufficiency theorems

in that paper to derive conditions under which a simple cap allocation is optimal.

However, as we show below, the IR constraint will always be violated if ignored.

3 Optimality Within the Set of Cap Allocations

In this section, we study cap allocations when the IR constraint is ignored and also

when exclusion is possible. Our analysis clarifies the role of the IR constraint and

identifies a candidate allocation for the solution of the regulator’s problem.

3.1 The case without an IR constraint

It is instructive to solve the regulator’s problem under the restriction that the regu-

lator can choose only among cap allocations, while ignoring the IR constraint. Let us

define a cap allocation as follows:
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Definition 1. A cap allocation indexed by x is an allocation qc(γ;x) such that

qc(γ;x) =

qf (γ) ; if qf (γ) ≥ x

x ; otherwise

for all γ ∈ Γ.

It is straightforward to confirm that a cap allocation is always incentive compatible.

For a given cap allocation, there also exists a critical type γc, defined as follows:14

Definition 2. Given x ∈ Q, let γc(x) be the unique value in Γ such that qf (γ) > x

for all γ ∈ [γ, γc(x)) and qf (γ) < x for all γ ∈ (γc(x), γ].

We allow in the definition of γc(x) that γc(x) = γ, in which case x ≥ qf (γ), so that

the flexible output for all types above γ is below x. Notice that the allocation qc(γ;x)

actually defines a quantity floor rather than a cap. We still refer to this allocation as

a cap allocation, since it corresponds to a cap on permissible prices and links thereby

with the literature on price-cap regulation. Note also that the cap allocation only has

bite in restricting the monopolist’s choice if x > qf (γ).

We define an optimal simple cap allocation to be an optimal cap allocation when

the IR constraint is ignored and all types produce. That is, the optimal simple cap

allocation solves

max
x≥qf (γ)

W c(x)

where W c(x) represents the regulator’s welfare:

W c(x) ≡
∫ γc(x)

γ

w(γ, qf (γ))dF (γ) +

∫ γ

γc(x)

w(γ, x)dF (γ)− σ

We now present a necessary condition for an optimal simple cap allocation:15

Lemma 2. The cap allocation indexed by x is an optimal simple cap allocation only

14Here and in the rest of the paper, we use the convention that the intervals [x, x) and (x, x)
correspond to the empty set.

15The existence of an optimal simple cap allocation follows from standard arguments, given As-
sumption 1.
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if x > qf (γ) and ∫ γ

γc(x)

wq(γ, x)dF (γ) = 0

Proof. In the appendix.

In the absence of a participation constraint, we could use results from Amador and

Bagwell (2013) and establish a general set of environments under which the optimal

simple cap allocation is optimal over the full class of incentive compatible allocations.

As we now argue, however, the presence of an IR constraint implies that the optimal

simple cap allocation is not feasible.

The basic point can be understood using Figure 1. The graph on the right in

Figure 1 illustrates the optimal simple cap allocation in bold (for the case where γc is

in the interior of Γ). This allocation is illustrated relative to the flexible allocation,

qf (γ), and the regulator’s ideal (i.e., efficient) allocation, qe(γ), which we define as

the allocation that maximizes w(γ, q).16 Notice that qe(γ) is downward sloping and

that qe(γ) > qf (γ), where the inequality reflects the aforementioned downward bias.

For given γ, qe(γ) induces a price equal to marginal cost (i.e., P (qe(γ)) = γ) when

α = 1. When α < 1, the regulator’s ideal allocation entails even higher quantities

and thus drives price below marginal cost. The optimal simple cap allocation is such

that the cap is ideal for the regulator on average for affected types (i.e., for γ ≥ γc).

The graph on the left in Figure 1 illustrates the same information in terms of the

induced prices, which are also depicted in bold. As this graph illustrates, the optimal

simple cap allocation places the price cap at a level that is ideal for the principal on

average for affected types. This graph also suggests that the participation constraint

is violated for the highest types when the optimal simple cap allocation is used. For

type γ, the optimal price cap lies strictly below the regulator’s ideal price, P (qe(γ)),

which equals γ when α = 1 and is less than γ when α < 1. The optimal price cap is

thus strictly below γ; hence, since the fixed cost σ is non-negative, the IR constraint

must fail for the highest-cost type when the optimal simple cap allocation is used.

The following lemma offers a formal confirmation of this point.

Lemma 3. The optimal simple cap allocation violates the IR constraint for the highest

types.

16We assume for this graphical analysis that qe(γ) is uniquely determined.
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P (qf (γ))

P (qe(γ))
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γ
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qe(γ)

qf (γ)

γc γ

Figure 1: Optimal Simple Cap Allocation Fails IR.

Proof. In the appendix.

It is also straightforward to confirm that the IR constraint holds for a cap allocation

if and only if it holds for the highest-cost type.

There are two ways a regulator could in principle deal with the problem that the

optimal simple cap allocation violates the IR constraint. First, it could decide not to

be so tough, and choose a cap that gives sufficient flexibility so that all types choose

to produce. Alternatively, it could choose a cap that is sufficiently tight that some

types choose not to produce. This leads us to consider the “best” cap allocation that

satisfies the IR constraint while allowing types to be excluded from production. We

thus proceed to characterize the class of allocations with caps and exclusion.

3.2 IR constraint and exclusion

Consider a situation where the regulator chooses a cap on the price, and as a result,

some high-cost types may choose not to produce. This is a cap allocation with potential

exclusion, and it is defined by a quantity x such that any type is free to choose between

producing a quantity higher or equal to x, or not producing at all:

Definition 3. A cap allocation with potential exclusion indexed by x is an allocation
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q(γ;x) such that

q(γ;x) =


qf (γ) ; if qf (γ) ≥ x,

x ; if qf (γ) < x and − γx+ b(x)− σ ≥ 0,

0 ; otherwise,

for all γ ∈ Γ.

A cap allocation with potential exclusion is clearly incentive compatible. Without

loss of generality, we can restrict attention to cap allocations such that x ≥ q ≡ qf (γ),

as no type will ever choose to produce below qf (γ) if given the choice to produce more.

Similarly, we can restrict attention to cap allocations such that x ≤ q where q > qf (γ)

is the value that satisfies −γq + b(q) = σ. Imposing a bound x above q is equivalent

to assigning no production for all types (as not even the lowest cost type is willing

to produce that much), and hence considering restrictions above that is unnecessary.

Note that our assumptions guarantee q ∈ Q.

Figure 2 presents a graphical representation of a cap allocation with exclusion

where a non-zero measure of types are excluded, some types are constrained at the

cap, and some other types are choosing their monopoly allocation. To describe such

an allocation, recall that, from Lemma 1, we know that any allocation with exclusion

satisfies a threshold property: types above some type γt are excluded from production,

while types below γt produce. Thus, given a bound x, let γt(x) ∈ [γ, γ] be the

associated exclusion threshold. That is, γt(x) is such that maxq≥x {−γq + b(q)− σ} <
0 for all γ ∈ (γt(x), γ] and maxq≥x {−γq + b(q)− σ} > 0 for all γ ∈ [γ, γt(x)).

However, not all the types that produce are able to do so at their monopoly level.

Types with a cost smaller than γc(x) would choose their monopoly level if forced to

produce, while types above γc(x) would choose the cap if forced to produce. Note

that γc(x) ≤ γt(x) with strict inequality if q < x < q.

The welfare generated by a cap allocation with potential exclusion is thus

W (x) ≡
∫ γc(x)

γ

[w(γ, qf (γ))− σ] dF (γ) +

∫ γt(x)

γc(x)

[w(γ, x)− σ] dF (γ) (1)

where the first term represents the regulator’s payoff from giving flexibility to types
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below γc(x), the second term represents the payoffs generated from types that produce

at the cap, x, and where the payoff of the excluded types is zero.

Let x? be such that x? ∈ argmaxx∈[q,q] W (x); that is, x? represents the optimal

cap that could be imposed.17 Given this cap x?, the associated cap allocation q? can

be written as:

q?(γ) =


qf (γ) γ ∈ [γ, γc(x

?))

x? γ ∈ [γc(x
?), γt(x

?)]

0 γ ∈ (γt(x
?), γ]

(2)

This cap allocation with potential exclusion q? is our candidate allocation for the

solution to the regulator’s problem. Our goal is thus to determine sufficient conditions

under which q? is also optimal within the set of all feasible allocations.

γ

q

qe(γ)

qf (γ)

excluded types

x

γc(x) γt(x) γγ

Figure 2: A Cap Allocation with Exclusion. The solid thick line represents a cap
allocation with exclusion.

Having identified our candidate solution q?, we hasten to add that it is not obvious

that the solution to the regulator’s problem indeed takes this form. For example, and

as we discuss in Section 4.2, we can also imagine that the optimal allocation might

have jumps and thus not take the form of a cap allocation. Further, a property of

the allocation q? is that, if exclusion is not used, then the highest type earns zero

profit and satisfies the IR constraint with equality. This property, too, is not obvious

17The existence of x? follows from standard arguments, given Assumption 1.
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in our no-transfer setting, since the allocation for this type affects as well incentive

compatible allocations for lower types.

4 Towards Sufficient Conditions

We return now to consider the solution to the regulator’s problem, Problem P1. As

a general matter, we do not know whether a cap allocation with or without exclusion

is optimal. Indeed, solving the regulator’s problem directly seems difficult, since the

possibility of excluding some types must be considered. We pursue an alternative

approach, one that divides the problems into several sub-problems.

The main idea is as follows:

1. Rather than working with the lower bound on production, we work with the

excluded types directly. Based on Lemma 1, we fix a threshold for excluded

types, γt, and consider the problem of allocating production for types below

γt while ignoring the allocation for types higher than γt. That is, we restrict

attention to the set of types [γ, γt] and study the problem for a regulator that

only considers types in that truncated set and is not allowed to exclude any

types in that set from production.18 We obtain conditions under which an

optimal allocation in this truncated problem is a cap allocation such that the

threshold or upper-bound type, γt, is indifferent between producing or not.

2. Next, we argue that such a truncated allocation is incentive compatible when

extended to the entire set [γ, γ] by giving types above γt zero output. The opti-

mal allocation that results from considering only the truncated set is thus also

optimal when considering the entire set of types for a given level of exclusion.

3. We then look for the best allocation by varying the level of exclusion, which in

our case is indexed by γt. This is a single variable optimization problem.

Towards this goal, let us first consider the regulator’s truncated problem.

18Thus, the regulator assigns production levels and incurs the fixed cost σ for all types in the
truncated set. For an excluded type, by contrast, output is zero and the fixed cost σ is not incurred.
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4.1 The Regulator’s Truncated Problem

For this problem, we fix γt ∈ (γ, γ] and define Γt(γt) ≡ [γ, γt].
19 The regulator’s

truncated problem is to find an allocation, qt : Γt(γt)→ Q, that maximizes its payoff

subject to the feasibility constraints and that no type in set Γt(γt) is excluded.20

Formally, the regulator’s truncated problem may be written as

max
qt:Γt(γt)→Q

∫
Γt(γt)

(w(γ, qt(γ))− σ) dF (γ) subject to: (Pt)

γ ∈ arg max
γ̃∈Γt(γt)

{−γqt(γ̃) + b(qt(γ̃))− σ} for all γ ∈ Γt(γt)

0 ≤ −γqt(γ) + b(qt(γ))− σ, for all γ ∈ Γt(γt)

Differently from Problem P1, in the regulator’s truncated problem no type in

Γt(γt) is excluded, explaining why the indicator functions do not appear in Problem

Pt.
21 Similarly to Subsection 3.1, if we were to look for a simple cap allocation in this

truncated problem, the optimal one would violate the IR constraint for the highest

cost type, which in this case is the threshold or upper-bound type, γt.

We conjecture that a cap allocation where type γt is indifferent between producing

or not is optimal. Let qi(γt) be the unique value such that

−γtqi(γt) + b(qi(γt)) = σ, and qi(γt) > qf (γt). (3)

Thus, qi(γt) is the output level that exceeds γt’s monopoly level and ensures that

this type is indifferent between producing at that level or not. In other words, it

corresponds to a price that equals the average cost for type γt. Note that under our

assumptions, such qi(γt) ∈ Q exists.

We define γH(γt) ∈ [γ, γt] to be the value such that qi(γt) ≤ qf (γ) for γ < γH(γt),

and qi(γt) ≥ qf (γ) for γ > γH(γt). Note that γH(γt) = γc(qi(γt)) and that γH(γt) < γt

given γt > γ.

19We ignore the case where γt = γ, as this implies that almost all types are excluded, a situation
that cannot be optimal under our assumptions.

20Within the set of cap allocations, it is sufficient to look for a quantity floor in [q, q]. When
checking for optimality more generally, we do not impose that restriction, and hence qt : Γ(γt)→ Q.

21A type in Γt(γt) could still be assigned zero output, but the fixed cost is incurred. Note that if
σ > 0, such assignment violates the type’s IR constraint.
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With these objects, we can define the truncated cap allocation, q?t (γ|γt):

q?t (γ|γt) =

qf (γ) γ ∈ [γ, γH(γt))

qi(γt) γ ∈ [γH(γt), γt]
(4)

The allocation q?t (γ|γt) is continuous in γ and features full pooling if γH(γt) = γ. If

γH(γt) is interior to the interval Γt(γt), then qi(γt) coincides with the flexible quantity

chosen by type γH(γt). Figure 3 displays the two possible cases for q?t for two different

values of γt. Panel (a) shows the case with partial pooling. Panel (b) shows the case

where γt is sufficiently small that full pooling of all types at the cap results.

γ

q
qf (γ)

γH γtγ γ

qi(γt)

(a) Partial pooling

q?t (γ, γt)

γ

q

qf (γ)

γtγ, γH γ

(b) Full pooling

qi(γt)
q?t (γ, γt)

Figure 3: The truncated cap allocation, q?t (γ|γt).

We seek conditions under which q?t (γ|γt) is the optimal solution to the regulator’s

truncated problem. To present our next result, we require a couple of definitions. Let

G(γ|γt) ≡ −κF (γt) + κ

[
γ − b′(qi(γt))
γ − γH(γt)

]
F (γ) +

1

γ − γH(γt)

∫ γ

γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃,

(5)

for γ > γH(γt) and where, following Amador and Bagwell (2013), κ is a relative

concavity parameter defined as

κ ≡ min
q∈Q

{
1 +

v′′(q)

αb′′(q)

}
.
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We let G(γH(γt)|γt) ≡ limγ↓γH(γt) G(γ|γt), which exists and is a finite number.

We may now state our general sufficiency result as follows:

Proposition 1. (Sufficient Conditions) If

(i) G(γ|γt) ≤ G(γt|γt) for all γ ∈ [γH(γt), γt], where G as given by (5); and

(ii) M1(γ) ≡ κF (γ) + wq(γ, qf (γ))f(γ) is non-decreasing in γ for γ ∈ [γ, γH(γt)),

then the cap allocation q?t (γ|γt) solves the regulator’s truncated problem, Problem Pt.

Proof. In the appendix.

Our proof approach follows a guess-and-verify structure. To begin, we follow

standard methods and re-write the incentive constraint in the regulator’s truncated

problem as an integral equation and a monotonicity requirement (namely, that qt(γ)

must be non-increasing).22 Next, we embed the monotonicity requirement into the

choice set, and we express the integral equation equivalently in terms of two inequality

conditions. The regulator’s truncated problem is thereby represented as a maximiza-

tion problem over functions belonging to a choice set of non-decreasing functions that

satisfy three inequality constraints, where one of the constraints is the IR constraint.

With the problem set up in this fashion, we conjecture that the cap allocation q?t (γ|γt)
is the solution. To confirm this conjecture, we construct multiplier functions for each

of the three inequality constraints. Under the conditions stated in Proposition 1 and

for the constructed multiplier functions, we find that the multiplier functions are non-

decreasing, the corresponding Lagrangian is concave, and the cap allocation satisfies

first-order conditions and a complementary slackness condition. Building on work by

Amador and Bagwell (2013), we show that these findings are sufficient to conclude

that q?t (γ|γt) solves the regulator’s truncated problem.23

22We emphasize that feasible allocations may be discontinuous. As illustrated in the intuition
developed just below, our proof approach thus must establish that the cap allocation q?t (γ|γt) is
optimal among a set of monotone and possibly discontinuous functions.

23It is instructive here to compare our regulator’s truncated problem, in which transfers are
unavailable, with the standard (Baron-Myerson) framework in which transfers are available. In
the solution approach for the standard framework, the integral equation is substituted into the
objective, the IR constraint is shown to bind for the highest type, the IR constraint for the highest
type is substituted into the objective, and the resulting objective is then maximized pointwise. If
the solution satisfies the monotonicity constraint, then the problem is solved. By contrast, in our no-
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4.2 Intuition

We now develop some intuition for the interpretation of Proposition 1. We begin with

part (ii). Observe that part (ii) is more easily satisfied when κ is big. Referring to

the definition of κ, we thus conclude that part (ii) is more easily satisfied when the

minimum value for 1 + v′′(q)
αb′′(q)

is big. Since wq(γ, qf (γ)) > 0, we see that part (ii) is

also more easily satisfied when the density is non-decreasing for γ ∈ [γ, γH(γt)).

To see why the relative sizes of 1
α
v′′(q) and b′′(q) and the density slope matter,

we consider alternatives to the truncated cap allocation. If the truncated cap alloca-

tion is optimal among all feasible allocations for the regulator’s truncated problem,

then it must be preferred by the regulator to alternative feasible allocations that are

generated by “drilling holes” in the flexible part of the allocation. Figure 4 illus-

trates one such alternative allocation, in which output levels between q1 ≡ qf (γ1) and

q2 ≡ qf (γ2) are prohibited and where γ < γ1 < γ2 < γH . There then exists a unique

type γ̃ ∈ (γ1, γ2) that is indifferent between q1 and q2. The alternative allocation thus

induces a “step” at γ̃, with the allocation q1 selected by γ ∈ [γ1, γ̃) and the allocation

q2 selected by γ ∈ [γ̃, γ2], where for simplicity we place type γ̃ with the higher types.

In comparison to the truncated cap allocation, the alternative allocation has ad-

vantages and disadvantages. First, the alternative allocation generates output choices

for γ ∈ [γ1, γ̃) that are closer to the the regulator’s ideal choices for such types; how-

ever, the alternative allocation also results in output choices for γ ∈ [γ̃, γ2] that are

further from the regulator’s ideal choices for such types. In line with our discus-

sion above, these observations suggest that a non-decreasing density should work in

favor of the truncated cap allocation. Second, the alternative allocation increases

the variance of the induced allocation around qf (γ) over [γ1, γ2]. Consistent with our

preceding discussion, this effect brings into consideration the relative magnitudes of
1
α
v′′(q) and b′′(q), where the latter determines the slope of qf (γ). If v(q) is concave,

then the variance effect should work in favor of the truncated cap allocation, since the

regulator would then not welcome an increase in variance. If instead v(q) is convex,

transfers setting, we cannot substitute the integral equation into the objective, since we do not have
a remaining transfer instrument with which to ensure that the solution of the resulting optimization
problem satisfies the integral equation. For the same reason, we cannot substitute the IR constraint
for the highest type into the objective. Indeed, as a general matter, when transfers are unavailable
it is no longer obvious that the IR constraint for the highest type must bind.
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Figure 4: Drilling a hole (with σ > 0).

then the regulator would benefit from the greater variance afforded by the alternative

allocation, with the benefit being larger when α is smaller. Based on this perspective,

we may understand that the truncated allocation could remain optimal when v(q) is

convex, if the density rises fast enough, α is sufficiently large and/or b′′(q) is large in

absolute value (so that qf (γ) is flat, in which case steps add little variation).

The intuitive discussion presented here considers only a subset of feasible alter-

native allocations that introduce variations in the flexible region. In our no-transfer

setting, the incentive compatibility constraint implies that an allocation must be given

by the flexible allocation over any interval for which the allocation is continuous and

strictly decreasing; however, an incentive compatible allocation may include many

points of discontinuity (steps), where any such point hurdles the flexible allocation

as illustrated in Figure 4.24 Our discussion above considers only an alternative al-

location with a single step, but this discussion provides an intuitive foundation for

understanding more generally the key forces at play.

We turn now to consider the intuition associated with part (i) of Proposition 1.

For type γt, the IR constraint holds with equality at the output choices qi(γt) and q′,

24For further discussion, see Melumad and Shibano (1991).
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where q′ < qf (γt) is defined so that type γt is indifferent between qi(γt) and q′; thus,

the IR constraint for type γt is satisfied provided that the allocation for this type

resides in the interval [q′, qi(γt)]. As noted above, it is also not obvious that the IR

constraint must bind for type γt. Part (i) of Proposition 1 provides conditions under

which the solution to the regulator’s truncated problem is such that type γt selects

qi(γt) and has a binding IR constraint.

More formally, we show in the proof that the value of the multiplier function for

the IR constraint of type γt equals G(γt|γt). The proposed allocation implies that

G(γt|γt) ≥ 0 (as shown in the proof of Proposition 1), confirming that the multiplier

on the IR constraint is non-negative; that is, the shadow price of relaxing the IR

constraint for type γt is non-negative. Part (i) of Proposition 1 goes further and

requires that G(γ|γt) ≤ G(γt|γt) for all γ ∈ [γH(γt), γt]. This condition ensures

that the regulator cannot improve on the cap allocation q?t (γ|γt) by altering the

allocation for types γ ∈ [γH(γt), γt] while respecting the monotonicity requirement. In

particular, it rules out alternative allocations that introduce steps within the [γH , γt]

region.25

For additional insight, we may compare condition (i) with the case where the

IR constraint is not present (or not binding). Consider for example the analysis of

Amador and Bagwell (2013), a case without IR constraints and with the additional re-

quirement that γH(γt) be interior. In that case, G(γt|γt) = 0, and their condition (c2)

for the optimality of a cap is equivalent to our condition that G(γ|γt) ≤ G(γt|γt).26

25For the case of the special family of preferences introduced in (6), one can confirm by direct
calculations that condition (i) is sufficient to guarantee that introducing a step in this region is not an
improvement. Furthermore, for this family of preferences, condition (i) and ruling out the optimality
of introducing a step in this pooling region are equivalent conditions when the IR constraint is not
present, as shown in Amador and Bagwell (2013).

26For case where γH = γ, Amador et al. (2018) recover conditions for optimality of a cap without
the presence of the IR constraint. Our condition is related but a bit more complex. For example,
our condition requires that ∫ γ

γ

wq(γ, qi(γ))dF (γ) ≥ 0,

which holds with equality in Amador et al. (2018). In our case, the regulator would value an increase
in q for all types, but such an increase is infeasible because of the binding IR constraint.
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5 Global Optimality

In this section, we present a proposition that provides sufficient conditions for the

global optimality of the cap allocation with potential exclusion q?. We then provide

several results that facilitate the application of the sufficient conditions. Finally, we

discuss how our results can be used to characterize optimal regulation in the “no-

exclusion” scenario mentioned in the Introduction.

The results of the previous section offer a characterization of the optimal solution

given an exogenous amount of exclusion as defined by the fixed threshold or upper-

bound type, γt. For every exclusion threshold γt, we found sufficient conditions for the

associated truncated cap allocation q?t , defined in (4), to be optimal when restricting

attention only to those types not excluded from production. However, it is direct to

argue now that, given an amount of exclusion, the truncated cap allocation is optimal

when attention is widened to include all types. Note that the only potential issue is

that the q?t allocation when extended for all types must remain incentive compatible.

But this is straightforward: since type γt is indifferent between producing or not, all

types above γt strictly prefer not to produce, as they face a higher marginal cost.

We have the following result:

Proposition 2. Assume that parts (i) and (ii) of Proposition 1 hold for all γt ∈ (γ, γ].

Then the cap allocation with potential exclusion q? defined in (2) solves the regulator’s

problem, Problem P1.

Proof. We know from Lemma 1 that any level of exclusion is given by a threshold

γt ∈ (γ, γ]. Given any level of exclusion γt, the allocation q?(γ|γt) defined in equation

(4) remains a feasible allocation when the allocation is extended to entire type space

by assigning no production to types strictly above γt. This follows because type γt

is indifferent between producing or not in the q?(γ|γt) allocation, and thus, all types

higher than γt strictly prefer not to produce, as prescribed by the allocation.

Thus, for a given level of exclusion, γt, Proposition 1 guarantees that the allocation

q?(γ|γt) extended over the entire type space is optimal within all feasible allocations

that deliver the same level of exclusion.

Note that the allocation q?(γ) is the optimal among all the q?(γ|γt) allocations for

all γt ∈ (γ, γ]. We can ignore any allocation where γt = γ (that is, full exclusion) as
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such an allocation is dominated by the fully flexible allocation. As a result q?(γ) is

optimal among the set of all feasible allocations.

We now provide several results that facilitate the application of our propositions.

We develop three approaches. We first provide a corollary that states simple condi-

tions under which our sufficient conditions for our propositions are sure to hold. We

next provide a second corollary which identifies for a family of demand functions a

simple inequality condition that guarantees the satisfaction of the sufficient condi-

tions for our propositions. We show that the demand family includes linear demand,

constant elasticity demand and log demand functions, and we derive and interpret the

corresponding inequality condition for each of these demand specifications. Finally,

a third approach is to check the sufficient conditions for our propositions directly. To

illustrate this approach, we consider an example with exponential demand.

We begin with the following corollary, which provides simple and easy-to-check

conditions for Proposition 1 and 2:

Corollary 1. Suppose that κ ≥ 1/2. For given γt, if f(γ) is non-decreasing for all

γ ∈ [γ, γt], then conditions (i) and (ii) of Proposition 1 hold. If f(γ) is non-decreasing

for all γ ∈ [γ, γ], then the cap allocation with exclusion q? is optimal within the set of

all feasible allocations.

Proof. In the appendix.

The relative concavity and monotone density sufficient conditions in Corollary 1

are directly consistent with the intuition developed in Section 4.2. In particular, we

note that κ ≥ 1/2 is sure to hold if v(q) is weakly concave; further, this inequality can

hold as well when v(q) is convex, if α is sufficiently large and/or b′′(q) is sufficiently

large in absolute value (so that qf (γ) is relatively flat).27

Let us also point out that the conditions in Corollary 1 hold independently of the

value of the fixed cost, σ. That is, if κ ≥ 1/2 and f is non-decreasing for its entire

support, then the optimal cap allocation with exclusion, q?, is optimal for any σ.

Note that the optimal cap allocation with exclusion is itself affected by the value of

27The result that higher α makes the condition κ ≥ 1/2 in Corollary 1 easier to hold is more
general. Indeed, it is possible to show that a higher value of α makes conditions (i) and (ii) in
Proposition 1 easier to satisfy.
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σ, but Corollary 1 guarantees that its global optimality is not. We note in particular

that a higher σ generates a lower value for qi(γt), corresponding to a higher price cap.

Also, a different value of σ may change the optimal value of γt embedded in q?.

We proceed now to our second approach for facilitating the application of our

propositions. In the Appendix proof of Corollary 1, we show that if the following

M2(γ) function,

M2(γ) ≡ κF (γ) +
1

α
v′(qi(γt))f(γ) + (κ− 1)(γ − b′(qi(γt)))f(γ),

is non-decreasing in [γH(γt), γt], then part (i) of Proposition 1 holds. We now show

that for a demand family (that includes several commonly used examples as we show

below), M1(γ) = M2(γ); thus, for this family, if part (ii) of Proposition 1 holds

globally for all γ ∈ [γ, γ], then part (i) holds as well.

Toward this end, we consider a family of demand functions such that28

P ′(q)

P (q)
q = a0 +

b0

P (q)
for all q ∈ (0, qmax] with a0 6= −1. (6)

We have the following result:

Lemma 4. Suppose that (6) holds. Then

(a) v(q) = − a0
1+a0

b(q)− b0
1+a0

q for all q ∈ Q,

(b) κ = 1 + 1
α
v′′(q)
b′′(q)

= 1− 1
α

a0
1+a0

,

(c) M1(γ) = M2(γ) for all γ ∈ [γ, γ].

Proof. In the appendix.

For the demand family stated in equation (6), we can obtain a general sufficient

condition for the results in Proposition 1 (and 2) to hold.

28As we discuss later, this family of demand functions generates payoff functions w and b that
belong to the preference family identified by Amador and Bagwell (2013) in their Proposition 2.
This family is also the one studied by the linear delegation approach developed by Kolotilin and
Zapechelnyuk (2019).
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Corollary 2. Suppose that P satisfies (6). If

(2κ− 1)f(γ) +
1

α
v′(qf (γ))f ′(γ) ≥ 0 (7)

holds for all γ ∈ [γ, γ], then conditions (i) and (ii) of Proposition 1 hold for all

γt ∈ (γ, γ].

Proof. In the appendix.

It is instructive to compare Corollaries 1 and 2. Inequality (7) clearly holds if κ ≥ 1/2

and f(γ) is non-decreasing for all γ ∈ [γ, γ]. For the demand family identified in

equation (6), inequality (7) further indicates exactly how a relaxation of either of

these conditions can be accommodated by an offsetting strengthening of the other.

Note that similarly to Corollary 1, the condition in Corollary 2 is independent of the

value of σ, and thus implies that the optimal cap allocation is optimal for any σ.

As we now illustrate, the demand family defined in equation (6) includes several

common examples as special cases. For each of these examples, we also represent

the form that inequality (7) takes and thereby derive sufficient conditions for the

optimality of the cap allocation with potential exclusion q? defined in (2)

Linear demand. Consider P (q) = µ− βq with µ > γ, β > 0 and Q = [0, µ/β − ε]
for ε > 0 small. For this example, qf (γ) = (µ−γ)/(2β), v(q) = βq2/2 and κ = 1− 1

2α
.

Assumption 1 is satisfied for ε > 0 sufficiently small if α ∈ [µ/(µ + γ), 1] where 1 >

µ/(µ+ γ) > 1/2 follows from µ > γ > 0. Assumption 2 is satisfied if qf (γ) >
√
σ/β.

This demand satisfies condition (6) with a0 = 1 and b0 = −µ. Condition (7) is

satisfied in this example if
f ′(γ)

f(γ)
≥ 2(1− α)

µ− γ

for all γ ∈ [γ, γ].

Constant elasticity demand. Consider P (q) = q−
1
η with η > 1, and let Q =

[0, qmax] where qmax > 0. For this example, qf (γ) =
(

γη
η−1

)−η
, v(q) = 1

η−1
q
η−1
η and

κ = 1+ 1
α

1
η−1

. Assumption 1 is satisfied if qmax
− 1
η <

γ

1− 1
η

(1− 1
α

)
where 0 <

γ

1− 1
η

(1− 1
α

)
≤ γ

follows from α ∈ (0, 1] and γ > 0. Assumption 2 is satisfied if
(

γη
η−1

)1−η
1
η
> σ. This
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demand satisfies condition (6) with a0 = − 1
η

and b0 = 0. Condition (7) is satisfied in

this example if
f ′(γ)

f(γ)
≥ −α(η − 1) + 2

γ

for all γ ∈ [γ, γ].

Logarithmic demand. Consider P (q) = µ−β ln q with β > 0 and Q = [0, eµ/β−ε]
for ε > 0 small. For this example, qf (γ) = e

µ−β−γ
β , v(q) = βq and κ = 1. Assumption

1 is satisfied for ε > 0 sufficiently small if β(1− α)/α < γ. Assumption 2 is satisfied

if βe
µ−β−γ

β > σ. This demand satisfies condition (6) with a0 = 0 and b0 = −β.

Condition (7) is satisfied in this example if

f ′(γ)

f(γ)
≥ −α

β

for all γ ∈ [γ, γ].

Of course, the demand family defined by (6) includes examples beyond the three

examples highlighted here.29 The three examples, however, are commonly used in the

literature and illustrate the breadth of the demand family defined by (6).

The sufficient conditions derived for the three examples admit an interpretation

that is in line with the intuition developed previously whereby a rising density f(γ)

and a concave v(q) work in favor of the optimality of the cap allocation. For the

constant elasticity and log demand examples, v(q) is concave and linear, respectively,

and the sufficient conditions hold when f(γ) is non-decreasing; indeed, for these ex-

amples, the sufficient conditions are satisfied even when f(γ) is decreasing, provided

that it does not fall too quickly. By contrast, for the linear demand example, v(q)

is convex, which works against the optimality of the cap allocation. The sufficient

condition for this example thus places a more demanding restriction on the density:

the condition fails if f(γ) is anywhere decreasing, and it requires that f(γ) is in-

creasing (non-decreasing) when α < 1 (α = 1). We note as well that in all of these

examples a higher value of α also supports the sufficient conditions (as expected from

our previous discussion).

29For example, the demand function P (q) = µ− βqη satisfies (6) with a0 = η and b0 = −µη.
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Interestingly, the demand family we have identified corresponds to the “linear

delegation” case studied in Kolotilin and Zapechelnyuk (2019) for the regulation

problem when σ = 0.30 However, we are not restricted to demand functions within

the family that satisfies condition (6). For other demand functions, we could use

parts (i) and (ii) of Propositions 1 and 2 directly. Alternatively, Corollary 1 also

allows us to find simple conditions. Our results also apply when there is a fixed cost

of production, σ > 0.

To illustrate the approach in which parts (i) and (ii) of Propositions 1 and 2 are

directly used, we consider next an example with exponential demand. We note that

this example does not fit in the family specified by condition (6):

Exponential demand. Consider P (q) = βe−q with β > max{γ, γe2} with Q =

[0, 2 − ε] for ε > 0 small. For this example, the sign of v′′(q) varies over Q. We

find that v′′(q) = βe−q(1 − q) and κ = 1 − 1
2α

. Assumption 1 is satisfied for ε > 0

sufficiently small if α > 2/(1+γ) where this inequality when combined with α ∈ (0, 1]

implies that γ > 1. Assumption 2 is satisfied when maxq∈Q(βe−q−γ)q > σ. Corollary

1 holds if α = 1 and f if non-decreasing for all γ ∈ [γ, γ].

At this point, it is convenient to pause and consider the “no-exclusion” scenario

mentioned in the Introduction, wherein the regulator must ensure that all types choose

to produce so that exclusion never occurs. To characterize the optimal regulatory

policy for this scenario, we may refer to the truncated cap allocation q?t (γ|γt), defined

in (4), for the special case where γt = γ. This allocation corresponds to a price-cap

regulatory policy, where the price cap is set at the second-best level that leaves a

30Kolotilin and Zapechelnyuk (2019) consider linear delegation problems where the principal’s
objective, V (γ, q), satisfies Vq(γ, q) = −γ − c(q) and where the agent’s objective, U(γ, q), satisfies
Uq(γ, q) = d(γ)−c(q) where c and d are continuous functions and c is strictly increasing. This implies
that Vq(γ, q)−Uq(γ, q) = γ−d(γ). Thus, Vq(γ, q)−Uq(γ, q) is independent of q. In our case, for σ = 0,
Vq(γ, q) = wq(γ, q) = −γ + b′(q) + 1

αv
′(q). Given that the objective of the agent can be modified by

any strictly increasing affine transformation, we have that in our case, Uq(γ, q) = A(−γ + b′(q)) for
any A > 0. Hence, linear delegation requires that there exists A > 0 such that Vq(γ, q)−Uq(γ, q) is
independent of q, or alternatively, that there exists A > 0 and B such that

b′(q) +
1

α
v′(q)−Ab′(q) = B.

Using b′(q) = P ′(q)q+P (q) and v′(q) = −qP ′(q), the above delivers condition (6). Note that demand
functions within this family deliver payoff functions w(γ, q) and b(q) that belong to the restricted
preference family previously identified by Amador and Bagwell (2013) in their Proposition 2.
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monopolist with the highest possible cost, γ, with zero profit (inclusive of the fixed

cost, σ). To establish conditions for the optimality of this policy for the no-exclusion

scenario, we simply set γt = γ and refer to Proposition 1, Corollaries 1 and 2, and the

demand examples above. Thus, for example, this price-cap allocation is optimal for

the no-exclusion scenario if the demand function takes a linear, constant elasticity or

log form and if a simple inequality condition holds, respectively, where the inequality

condition is sure to hold if the density is non-decreasing over the full support.

By contrast, a characterization of optimal regulation for the general scenario in

which exclusion is allowed must also determine the optimal value for γt. In other

words, the optimal regulatory policy for the general scenario must determine as well

the degree (if any) of exclusion. We develop our results for the optimal degree of

exclusion in the next section.

6 When to Exclude?

In the previous section, we obtain conditions that guarantee that the cap allocation

with exclusion, q? defined in (2), is optimal within the set of all feasible allocations.

In this section, we study the properties of this optimal cap allocation, q?, and in

particular, whether or not some types are excluded from production.

Given a level of exclusion γt, we can write the welfare function as

W (γt) =

∫ γH(γt)

γ

(w(γ, qf (γ))− σ)dF (γ) +

∫ γt

γH(γt)

(w(γ, qi(γt))− σ)dF (γ)

where as before qi(γt) represents the quantity strictly above qf (γt) that makes type

γt indifferent between producing or not, as in (3).

Taking the derivative of the welfare function with respect to γt, we obtain that31

W ′(γt) = (w(γt, qi(γt))− σ)f(γt) +

∫ γt

γH(γt)

wq(γ, qi(γt))q
′
i(γt)dF (γ)

This first order condition has a simple intuition. Increasing the exclusion threshold γt

31 The function γH(γt) may fail to be differentiable at the highest value for γt at which γH(γt) = γ;
however, the differentiability of γH does not affect the differentiability of the objective. An argument
similar to the one use in the proof of Lemma 2 can be used to show differentiability of the objective.
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generates two marginal effects. As indicated in the first term, it brings the marginal

type that was previously excluded back into production. But in addition it changes

the quantity at which all pooled types produce, generating an infra-marginal effect

that is captured by the second term. The following result shows that increasing the

exclusion threshold reduces the quantity at which pooled types produce:

Lemma 5. The quantity of the indifferent type, qi(γt), is such that q′i(γt) < 0. In

addition, γt > γH(γt) for all γt > γ.

Proof. In appendix.

We now develop conditions under which no exclusion (γt = γ) is optimal. Using

the definition of w, together with the definitions of γt and γH(γt), we obtain

W ′(γt) =
1

α
v(qi(γt))f(γt)− qi(γt)

(
1

α
v′(qi(γt))

)
F (γt)− F (γH(γt))

γt − b′(qi(γt))

+
qi(γt)

γt − b′(qi(γt))

∫ γt

γH(γt)

(γ − b′(qi(γt)))dF (γ)

for all γt ∈ (γ, γ].32

We know that γ > b′(qi(γt)) for all γ > γH(γt). So the last term in the above is

strictly positive. Thus,

W ′(γt) >
1

α
v(qi(γt))f(γt)− qi(γt)

(
1

α
v′(qi(γt))

)
F (γt)− F (γH(γt))

γt − b′(qi(γt))

=
1

α
v(qi(γt))

[
f(γt)−

F (γt)− F (γH(γt))

γt − b′(qi(γt))

]
+

1

α

[
v(qi(γt))− v′(qi(γt))qi(γt)

]F (γt)− F (γH(γt))

γt − b′(qi(γt))
.

Using b′(qi(γt)) ≤ γH(γt) < γt, we have that

f(γt)−
F (γt)− F (γH(γt))

γt − b′(qi(γt))
≥ f(γt)−

F (γt)− F (γH(γt))

γt − γH(γt)
=

∫ γt
γH(γt)

[
f(γt)− f(γ)

]
dγ

γt − γH(γt)
≥ 0,

32The value of α does not affect qi(γt). So, using the above equation one can show that αW ′(γt)
is strictly increasing in α. Thus, the optimal exclusion threshold γt is weakly increasing in α.
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where the last inequality follows if f(γ) is non-decreasing. If v(q) is weakly concave,

then v(q)− v′(q)q ≥ 0 as v(0) = 0. Hence:

Proposition 3 (No exclusion). If f(γ) is non-decreasing for all γ ∈ [γ, γ] and v(q)

is weakly concave for all q ∈ Q, then W ′(γt) > 0 for all γt ∈ (γ, γ]. Under these

conditions, Corollary 1 holds, and thus a cap with no exclusion (γt = γ) solves the

regulator’s problem.

Proof. The proof is given in the text.

Proposition 3 delivers a general set of conditions under which there is no exclusion.

The log demand and constant elasticity demand examples satisfy the requirement that

v is weakly concave. In addition, if f is non-decreasing, then the optimal allocation

in these examples is a cap allocation without exclusion.

It may be helpful to discuss the role of the fixed cost, σ, in these results. If

σ = 0, then the possibility of exclusion is included in the truncated problem, as the

regulator could assign zero output to some types and still satisfy the IR constraint for

that problem. Thus, if Proposition 1 holds at γt = γ, then a cap allocation without

exclusion is optimal. When σ > 0, exclusion is no longer included in the truncated

problem. Exclusion remains feasible in the regulator’s problem, however, and indeed

the assignment of zero output carries the extra benefit that the fixed cost is saved.

Proposition 3 covers this case as well and shows that exclusion is still not used.

For the linear demand example, however, v is strictly convex, and Proposition 3

thus does not apply. For this example, in the case of a uniform distribution with

α = 1 (so that the regulator maximizes aggregate social surplus), and σ > 0, we have

a very different result:

Proposition 4 (Exclusion). Consider the linear demand example and suppose that

F is uniform and α = 1. If σ > 0, then

(a) In any optimal allocation, γt is such that γH(γt) = γ.

(b) If qi(γ) < qf (γ), then in any optimal allocation γt < γ and qi(γt) = q? where q?

is a solution of
(µ− γ)(µ− γ − 2βq?)(q?)2

σ − β(q?)2
= σ.
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Proof. In the appendix.

This proposition contains two results. The first is that in the linear demand

example with a uniform distribution and α = 1, it is always optimal to pool all types

at the cap (part (a)). Part (b) argues that if not all types pool at the cap when an

allocation features no exclusion, that is, when γt = γ, then some higher-cost types

will necessarily be excluded in any optimal allocation.33

The above result demonstrates that no-exclusion result of Proposition 3 is not

a general property. Because of its tractability, the linear demand example with a

uniform distribution and α = 1 is often used in the literature. For this case, we have

shown that a cap allocation is optimal but that such an allocation also features the

exclusion of higher-cost types.

In this example, the optimal regulation contract provides for a disconnected set of

quantities (a quantity of zero for excluded types and an interval of quantities bounded

away from zero for non-excluded types). This contract is clearly distinct from the

interval allocations that are typically featured in the delegation literature.

7 Conclusion

We analyze the Baron and Myerson (1982) model of regulation under the restriction

that transfers are infeasible. To do this, we extend the Lagrangian approach to

delegation problems of Amador and Bagwell (2013) to include an ex post participation

constraint that allows for the possible exclusion of some types. We report sufficient

conditions under which optimal regulation takes the simple and common form of

price-cap regulation. We identify families of demand and distribution functions and

welfare weights that satisfy our sufficient conditions. We also report conditions under

which the optimal price cap is set at a level such that no types are excluded. Using a

linear demand example, we show that exclusion of higher-cost types can be optimal

when these conditions fail to hold. Our analysis also can be used to provide conditions

33The proposition only characterizes the solution for σ > 0. When σ = 0, if qi(γ) < qf (γ), we
can show that any γt such that qi(γt) ≤ qf (γ) is optimal. Thus, the regulator is indifferent between
some exclusion or none. Kolotilin and Zapechelnyuk (2019) characterize the solution for this case
(α = 1, σ = 0 and linear demand) when the distribution F is unimodal and show that optimal
regulation involves a cap with exclusion. This case goes beyond our Corollary 2 which requires a
non-decreasing density.
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for the optimality of price-cap regulation when an ex post participation constraint is

present and exclusion is infeasible.

Our work points to several directions for future research. First, we provide general

sufficient conditions so that a cap allocation with possible exclusion is optimal. These

sufficient conditions guarantee that the Lagrangian approach can be used to show that

a price cap is optimal for any given level of exclusion. Thus, the sufficient conditions

may be stronger than necessary since the price-cap structure is required to be optimal

even for exclusion levels that are sub-optimal. It should be possible to relax these

conditions by using the Lagrangian approach only at the optimal level of exclusion.

Second, if our sufficient conditions fail, it may be that the optimal allocation is not

a price cap with possible exclusion. In that case, the Lagrangian approach requires

us to identify the alternative solution candidate. It should be possible as well to

construct Lagrange multipliers and generate sufficient conditions for such a case.

Third, we focus on a single-product monopolist and leave for future research the

multi-product expression of our findings. More generally, the characterization of opti-

mal delegation contracts in multi-dimensional settings is a challenging and important

avenue for future work.34

Fourth, our analysis extends the optimal delegation literature to include an ex-

post participation constraint that allows for possible exclusion within a regulation

framework. We expect that other applications likewise may be naturally captured in

versions of the delegation model developed here.

34 For related work, see Ambrus and Egorov (2017), Amador and Bagwell (2020), Armstrong and
Vickers (2010), Frankel (2014), Frankel (2016) and Koessler and Martimort (2012). The paper by
Frankel (2016) is perhaps of special relevance here. He considers a model with multiple actions and
establishes the exact optimality of a generalized cap rule, but under the assumptions that the loss
function is quadratic, the agent has a constant bias, the ex ante distribution of states is normal iid,
and the participation constraint is absent.
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A Proof of Lemma 1

Proof. Suppose to the contrary that for some γ1 and γ2 with γ ≤ γ1 < γ2 ≤ γ, we

have a feasible allocation such that q(γ1) = 0 < q(γ2). A monopolist with type γ1

then receives a profit of zero and would gain by violating its incentive compatibility

constraint and selecting instead the positive output intended for type γ2 :

−γ1q(γ2) + b(q(γ2))− σ > −γ2q(γ2) + b(q(γ2))− σ ≥ 0

where the first inequality follows since q(γ2) > 0 and γ1 < γ2, and the second inequal-

ity follows since under incentive compatibility a monopolist with type γ2 cannot gain

from selecting q(γ1) = 0 rather than q(γ2).

For the second part, suppose that for γt ∈ (γ, γ), −γtq(γt) + b(q(γt)) > σ. Then,

for all sufficiently small ε > 0, we have that −(γt+ ε)q(γt) + b(q(γt)) > σ. As a result,

type γ1 = γt + ε will prefer to produce rather than not, a contradiction of the cut-off

property. Suppose instead that −γtq(γt) + b(q(γt)) < σ, so type γt strictly prefers not

to produce. For all sufficiently small ε > 0, we have that −(γt− ε)q(γt− ε) + b(q(γt−
ε)) > σ, by the cut-off property and strict monotonicity of the profit function in γ

when q > 0. But this implies that −γtq(γt−ε)+b(q(γt−ε)) > σ−εq(γt−ε), and thus,

for sufficiently small ε, type γt would strictly prefer to produce given Assumption 2

and choose type γt − ε’s choice, a violation of feasibility.

B Proof of Lemma 2

Proof. We start by observing that for any ∆ 6= 0,

W c(x+ ∆)−W c(x)

∆

=

∫ γc(x)

γc(x+∆)

w(γ, x+ ∆)− w(γ, qf (γ))

∆
dF (γ) +

∫ γ

γc(x)

w(γ, x+ ∆)− w(γ, x)

∆
dF (γ)

(8)

Then, we consider two different cases.

Case 1. x > qf (γ). Then for all |∆| > 0 small enough, we have that x+ ∆ > qf (γ),
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and as a result γc(x+ ∆) = γc(x) = γ, and thus

W c(x+ ∆)−W c(x)

∆
=

∫ γ

γc(x)

w(γ, x+ ∆)− w(γ, x)

∆
dF (γ)

Taking the limit as ∆→ 0, we obtain

dW c(x)

dx
=

∫ γ

γc(x)

wq(γ, x)dF (γ)

Case 2. 0 < qf (γ) < x ≤ qf (γ). Consider a neighborhood Ux around x such

that that 0 6∈ cl(Ux). Let Kx = maxy∈cl(Ux) |b′(y) + v′(y)/α|. Assumption 1 guar-

antees that such Kx exists and is finite. The mean value theorem guarantees that∣∣∣ (b(y)+v(y)/α)−(b(x)−v(x)/α)
y−x

∣∣∣ ≤ Kx.

Note that qf (γc(x)) = x, and that for |∆| > 0 small enough, qf (γ) ∈ Ux for

γ ∈ [γc(x+ |∆|), γc(x− |∆|)], given that qf and γc are continuous. Then,

∫ γc(x)

γc(x+∆)

∣∣∣∣w(γ, x+ ∆)− w(γ, qf (γ))

∆

∣∣∣∣ dF (γ)

=

∫ γc(x)

γc(x+∆)

∣∣∣∣−γ(x+ ∆− qf (γ))

∆
+

(b(x+ ∆) + v(x+ ∆)/α)− (b(qf (γ))− v(qf (γ))/α)

∆

∣∣∣∣ dF (γ)

≤
∫ γc(x)

γc(x+∆)

γ

∣∣∣∣x+ ∆− qf (γ))

∆

∣∣∣∣ dF (γ)+∫ γc(x)

γc(x+∆)

∣∣∣∣(b(x+ ∆) + v(x+ ∆)/α)− (b(qf (γ))− v(qf (γ))/α)

x+ ∆− qf (γ)

×x+ ∆− qf (γ)

∆

∣∣∣∣ dF (γ)

≤
∫ γc(x)

γc(x+∆)

γ

∣∣∣∣x+ ∆− qf (γ))

∆

∣∣∣∣ dF (γ) +

∫ γc(x)

γc(x+∆)

Kx

∣∣∣∣x+ ∆− qf (γ)

∆

∣∣∣∣ dF (γ)

= (γ +Kx)

∫ γc(x)

γc(x+∆)

∣∣∣∣x+ ∆− qf (γ)

∆

∣∣∣∣ dF (γ)

≤ (γ +Kx)

∫ γc(x)

γc(x+∆)

∣∣∣∣x+ ∆− x
∆

∣∣∣∣ dF (γ) = (γ +Kx)

∫ γc(x)

γc(x+∆)

dF (γ)
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The steps above are immediate except for the last inequality. For this we use that

if x < qf (γ), then for all sufficiently small ∆, qf (γc(x + ∆)) = x + ∆. If x = qf (γ),

then for ∆ > 0, the integral range is empty (and thus, the integral equals zero). For

∆ < 0, we still have that qf (γc(x+ ∆)) = x+ ∆.

Now note that the last integral above tends to zero as ∆ goes to zero. And thus,

taking the limit of (8) as ∆→ 0, we obtain that for x > qf (γ):

dW c(x)

dx
=

∫ γ

γc(x)

wq(γ, x)dF (γ)

Note that

dW c(s)

dx

∣∣∣∣
x=qmax

=

∫ γ

γc(qmax)

wq(γ, qmax)dF (γ) <

∫ γ

γ

wq(γ, qmax)dF (γ) = wq(γ, qmax) < 0

where we use that γc(qmax) = γ as qmax > qf (γ) and that wq(γ, qmax) > wq(γ, qmax)

for γ > γ to show the first inequality. For the last inequality we use Assumption 1.

Note that wq(γ, qf (γ)) > 0, as v′(q) > 0. Consider x0 > qf (γ) such that

wq(γ, x0) > 0. Such an x0 exists by continuity of wq. Note that for all for all

q0 ∈ (qf (γ), x0], γc(q0) < γ and wq(γ, q0) ≥ wq(γ, x0) > 0, by weak concavity of w. It

follows that 0 < wq(γ, q0) ≤ wq(γ, q0) for all γ ∈ [γ, γ]. Hence for all q0 ∈ (qf (γ), x0]

we have that
dW c(s)

dx

∣∣∣∣
x=q0

=

∫ γ

γc(q0)

wq(γ, q0)dF (γ) > 0

It follows then that the optimal value of x is interior to (qf (γ), qmax] and must

solve the first order condition in the lemma.

C Proof of Lemma 3

Proof. Recall from Lemma 2 that x > qf (γ) and
∫ γ
γc(x)

wq(γ, x)dF (γ) = 0. Using

wqγ(γ, q) = −1 < 0, wq(γ, x) < 0 follows. Next, observe wq(γ, x) = −γ + P (x) +

(1−α
α

)(−P ′(x)x) < 0, and thus P (x) − γ < (1−α
α

)(P ′(x)x) ≤ 0 given P ′(x) < 0 and

α ∈ (0, 1]. Hence, π(γ, x) = (P (x) − γ)x < 0 ≤ σ, and so the IR constraint fails for

the highest type.
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D Proof of Proposition 1

Proof. We proceed as follows. First, we re-state the Regulator’s Truncated problem

by expressing the incentive compatibility constraints in their standard form as an

integral equation and a monotonicity requirement:35

max
qt:Γt(γt)→Q

∫
Γt(γt)

(w(γ, qt(γ))− σ) dF (γ) subject to:

− γqt(γ) + b(qt(γ))− σ −
∫ γt

γ

qt(γ̃)dγ̃ = U, for all γ ∈ Γt(γt)

qt(γ) non-increasing, for all γ ∈ Γt(γt)

0 ≤ −γqt(γ) + b(qt(γ))− σ, for all γ ∈ Γt(γt)

where U ≡ −γtqt(γt) + b(qt(γt))− σ is the profit enjoyed by the monopolist with the

highest possible cost type in Γt(γt).

Next, we follow Amador and Bagwell (2013) and re-write the incentive constraints

as a set of two inequalities and embed the monotonicity constraint in the choice set

of qt(γ). With the choice set for qt(γ) defined as Φ ≡ {qt|qt : Γt(γt) → Q; and qt

non-increasing}, the regulator’s truncated problem may now be stated in final form

as follows:

max
qt∈Φ

∫
Γt(γt)

(w(γ, qt(γ))− σ) dF (γ) subject to: (P ′t)

γqt(γ)− b(qt(γ)) + σ +

∫ γt

γ

qt(γ̃)dγ̃ + U ≤ 0, for all γ ∈ Γt(γt) (9)

−γqt(γ) + b(qt(γ))− σ −
∫ γt

γ

qt(γ̃)dγ̃ − U ≤ 0, for all γ ∈ Γt(γt) (10)

γqt(γ)− b(qt(γ)) + σ ≤ 0, for all γ ∈ Γt(γt) (11)

Let Λ1(γ) and Λ2(γ) denote the (cumulative) multiplier functions associated with the

two inequalities that define the incentive compatibility constraints in the final form

of the regulator’s truncated problem. The multiplier functions Λ1(γ) and Λ2(γ) are

restricted to be non-decreasing in Γt(γt). Letting Λ(γ) ≡ Λ1(γ)−Λ2(γ), we can write

35See, for example, Milgrom and Segal (2002).
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the Lagrangian of the regulator’s truncated problem as stated in P ′t as follows:

L =

∫
Γt

w(γ, qt(γ))dF (γ)−
∫

Γt

(∫ γt

γ

qt(γ̃)dγ̃ + U + γqt(γ)− b(qt(γ)) + σ

)
dΛ(γ)

+

∫
Γt

(
− γqt(γ) + b(qt(γ))− σ

)
dΨ(γ),

where without loss of generality we have removed the constant σ in the first integral

and where to save notation we have removed the dependence of Γt on γt. Notice that

Ψ(γ) is the multiplier for the ex post participation constraints. Ψ(γ) is also restricted

to be non-decreasing.

We propose the following multipliers:

Λ(γ) =


0 ; γ = γ

wq(γ, qf (γ))f(γ) ; γ ∈ (γ, γH(γt))

A+ κ(F (γt)− F (γ)) ; γ ∈ [γH(γt), γt]

and

Ψ(γ) =

0 ; γ ∈ [γ, γt)

A ; γ = γt

where

A =
1

γt − γH(γt)

[∫ γt

γH(γt)

wq(γ, qi(γt))f(γ)dγ + κ (γH(γt)− b′(qi(γt)))F (γt)

]
. (12)

Note that while defining Λ(γ), we allow for the possibility that γH(γt) = γ, and

the intermediate case in the definition then does not apply. This is the case where

there is full pooling of all types.

We show below that the hypothesis of Proposition 1 guarantees that R(γ) ≡
κF (γ) + Λ(γ) is non-decreasing; thus, we may write Λ(γ) as the difference between

two non-decreasing functions, Λ1(γ) = R(γ) and Λ2(γ) = κF (γ).36 We also require

that A ≥ 0 as Ψ(γ) must be non-decreasing. We establish this inequality below.

36For our analysis, only the difference between Λ1(γ) and Λ2(γ) matters, and so we need only show
that there exists two non-decreasing functions, Λ1(γ) and Λ2(γ), whose difference delivers Λ(γ).
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We note that the cap allocation q?t (γ|γt) together with the proposed multipliers

satisfy complementary slackness. The incentive compatibility constraints bind under

the cap allocation, and Ψ(γ) is constructed to be zero whenever the participation

constraint holds with slack.

When these multipliers are used, the Lagrangian becomes

L =

∫
Γt

w(γ, qt(γ))dF (γ)−
∫

Γt

(∫ γt

γ

qt(γ̃)dγ̃ + U + γqt(γ)− b(qt(γ)) + σ

)
dΛ(γ)

+
(
− γtqt(γt) + b(qt(γt))− σ

)
A

Recalling the definition of U and using Λ(γ) = 0 and Λ(γt) = A, we can then

write the Lagrangian as

L =

∫
Γt

w(γ, qt(γ))dF (γ)−
∫

Γt

(∫ γt

γ

qt(γ̃)dγ̃ + γqt(γ)− b(qt(γ)) + σ

)
dΛ(γ)

Integrating the Lagrangian by parts we get37

L =

∫
Γt

(
w(γ, qt(γ))f(γ)−Λ(γ)qt(γ)

)
dγ+

∫
Γt

(
− γqt(γ) + b(qt(γ))−σ

)
dΛ(γ) (13)

Let us now consider the concavity of the Lagrangian. Using (13), we may re-write

the Lagrangian as

L =

∫
Γt

(
w(γ, qt(γ))− κ(−γqt(γ) + b(qt(γ))− σ)

)
f(γ)dγ −

∫
Γt

Λ(γ)qt(γ)dγ

+

∫
Γt

(
− γqt(γ) + b(qt(γ))− σ

)
d(κF (γ) + Λ(γ))

From the definition of κ, w(γ, qt(γ)) − κb(qt(γ)) is concave in qt(γ). We may thus

37Observe that h(γ) ≡
∫ γt
γ
qt(γ̃)dγ̃ exists (as qt is bounded and measurable by monotonicity)

and is absolutely continuous. Observe as well that Λ(γ) ≡ Λ1(γ) − Λ2(γ) is a function of bounded
variation, as it is the difference between two non-decreasing and bounded functions. We may thus
conclude that

∫ γt
γ
h(γ)dΛ(γ) exists (it is the Riemman-Stieltjes integral), and integration by parts

can be done as follows:
∫ γt
γ
h(γ)dΛ(γ) = h(γ)Λ(γ)− h(γ)Λ(γ)−

∫ γt
γ

Λ(γ)dh(γ). Given that h(γ) is

absolutely continuous, we can replace dh(γ) with −qt(γ)dγ.
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conclude that the Lagrangian is concave in qt(γ) if

κF (γ) + Λ(γ)

is non-decreasing for all γ ∈ [γ, γt]. Using the constructed Λ(γ) and referring to part

(ii) of Proposition 1, we see that κF (γ) + Λ(γ) is non-decreasing for all γ ∈ [γ, γt]

if the jumps in Λ(γ) at γ and γH(γt) are non-negative. We verify these jumps are

indeed non-negative below.

We now show that the cap allocation q?t maximizes the Lagrangian. To this end,

we use the sufficiency part of Lemma A.2 in Amador et al. (2006), which concerns

the maximization of concave functionals on a convex cone. In our case, we need to

extend the set Q to be [0,∞), making our choice set Φ a convex cone. To do this,

we follow Amador and Bagwell (2013) and extend b and w to the entire non-negative

ray of the real line. We can then apply Lemma A.2 to the extended Lagrangian with

the choice set Φ̂ ≡ {q|q : Γt → <+; and q non-increasing}.
Following the arguments in Amador and Bagwell (2013), we can then establish

that the cap allocation q?t maximizes the Lagrangian if the Lagrangian is concave and

the following first order conditions hold:

∂L(q?t ; q
?
t ) = 0

∂L(q?t ;x) ≤ 0 for all x ∈ Φ,

where ∂L(q?t ;x) is the Gateaux differential of the Lagrangian in (13) in the direction

x.38 Importantly, the Lagrangian in (13) is evaluated using our constructed multiplier

functions.

Taking the Gateaux differential of the Lagrangian in (13) in direction x ∈ Φ, we

get39

38Given a function T : Ω → Y , where Ω ⊂ X and X and Y are normed spaces, if for x ∈ Ω and
h ∈ X the limit

lim
α↓0

1

α
[T (x+ αh)− T (x)]

exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T (x;h).
39Existence of the Gateaux differential follows from Lemma A.1 in Amador et al. (2006). See

Amador and Bagwell (2013) for further details concerning the application of this lemma.
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∂L(q?t ;x) =

∫
Γt

(
wq(γ, q

?
t (γ))f(γ)− Λ(γ)

)
x(γ)dγ

+

∫
Γt

(
− γ + b′(q?t (γ))

)
x(γ)dΛ(γ).

Using b′(qf (γ)) = γ and our knowledge of Λ and Ψ, we get that

∂L(q?t ;x) =

∫ γt

γH(γt)

(
wq(γ, qi(γt))f(γ)−A−κ(F (γt)−F (γ))−κ

(
b′(qi(γt))−γ

)
f(γ)

)
x(γ)dγ

Hence, integrating by parts, we get

∂L(q?t ;x) =

[∫ γt

γH(γt)

(
wq(γ, qi(γt))f(γ)−A−κ(F (γt)−F (γ))−κ

(
b′(qi(γt))−γ

)
f(γ)

)
dγ

]
x(γt)

−
∫ γt

γH(γt)

[∫ γ

γH(γt)

(
wq(γ̃, qi(γt))f(γ̃)− A− κ(F (γt)− F (γ̃))− κ

(
b′(qi(γt))− γ̃

)
f(γ̃)

)
dγ̃

]
dx(γ)

Now, we use
∫ a
b
{(F (c)− F (x)) + (d− x)f(x)} dx = (a − b)(F (c) − F (a)) + (d −

b)(F (a)− F (b)) to get that

∂L(q?t ;x) =

[∫ γt

γH(γt)

wq(γ, qi(γt))f(γ)dγ − (γt − γH(γt))A

− κ(b′(qi(γt))− γH(γt)) (F (γt)− F (γH(γt)))

]
x(γt)

−
∫ γt

γH(γt)

[∫ γ

γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃ − (γ − γH(γt))A

−κ ((γ − γH(γt)) (F (γt)− F (γ)) + (b′(qi(γt))− γH(γt)) (F (γ)− F (γH(γt))))

]
dx(γ)

Given that (b′(qi(γt)) − γH(γt))F (γH(γt)) = 0, as γH(γt) < γt and b′(qi(γt)) =

γH(γt) if γH(γt) ∈ (γ, γ), the above becomes:

∂L(q?t ;x) =

[∫ γt

γH(γt)

wq(γ, qi(γt))f(γ)dγ − (γt − γH(γt))A
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+ κ(γH(γt)− b′(qi(γt)))F (γt)

]
x(γt)

−
∫ γt

γH(γt)

[∫ γ

γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃ − (γ − γH(γt))A

− κ (γ − γH(γt))F (γt) + κ (γ − b′(qi(γt)))F (γ)

]
dx(γ)

Using the definition of G in equation (5), we can rewrite the above as

∂L(q?t ;x) = (G(γt|γt)−A)(γt− γH(γt))x(γt)−
∫ γt

γH(γt)

(G(γ|γt)−A)(γ− γH(γt))dx(γ).

Using (5) and (12), we also observe that

G(γt|γt) = A (14)

and thus

∂L(q?t ;x) = −
∫ γt

γH(γt)

(G(γ|γt)− A)(γ − γH(γt))dx(γ). (15)

We are now ready to evaluate the first order conditions.

Note that it follows immediately that ∂L(q?t ; q
?
t ) = 0 as q?t is constant for γ ∈

[γH(γt), γt].

If G(γ|γt) ≤ A = G(γt|γt) for all γ ∈ [γH(γt), γt], then for any non-increasing

x ∈ Φ, it follows that ∂L(q?t ;x) ≤ 0, which is provided by part (i) of Proposition 1.

Recall also that we require A ≥ 0, since Ψ(γ) must be non-decreasing. To see that

this inequality holds, note that

A = κ

[
γH(γt)− b′(qi(γt))

γt − γH(γt)

]
F (γt) +

1

γt − γH(γt)

∫ γt

γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃.

By the definition of γH , we have that qi(γt) ≥ qf (γH(γt)). Note also that b′(qf (γH(γt))) =

γH(γt), and concavity of b implies that b′(qi(γt)) ≤ b′(qf (γH(γt))) = γH(γt). So the

first term in the previous equation is non-negative. Finally, note that wq(γ, q) =
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P (q)− γ + P ′(q)q + 1
α
v′(q) = P (q)− γ − 1−α

α
qP ′(q). Thus

wq(γt, qi(γt)) = P (qi(γt))− γt −
1− α
α

qi(γt)P
′(qi(γt))

=
σ

qi(γt)
− 1− α

α
qi(γt)P

′(qi(γt)) ≥ 0

where the last equality follows from (P (qi(γt))− γt)qi(γt) = σ, by the definition of qi.

But we also have that

wq(γ, q) > wq(γ
′, q)

for all γ < γ′, and thus

wq(γ, qi(γt)) ≥ wq(γt, qi(γt)) ≥ 0

for γ ≤ γt. Hence, we can also sign the integral term:
∫ γt
γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃ ≥ 0.

Taken together, the above implies that A ≥ 0.

As discussed above, we now finish the argument that κF (γ) + Λ(γ) is non-

decreasing for all γ ∈ [γ, γ] by showing that the potential jumps in Λ(γ) are non-

negative. There are two cases to consider. The first case is where γH(γt) > γ. In this

case, there are two jumps, one at γ and one at γH(γt). For the jump at γH(γt), we

get

A+κ(F (γt)−F (γH(γt)))−wq(γH(γt), qf (γH(γt))f(γH(γt)) = G(γt|γt)−G(γH(γt)|γt)

where G(γH(γt)|γt) = −κ [F (γt)− F (γH(γt))] +wq(γH(γt), qf (γH(γt))f(γH(γt)). Part

(i) of Proposition 1 guarantees that G(γt|γt) ≥ G(γH(γt)|γt), and thus the jump at

γH(γt) is non-negative.

The jump in Λ(γ) at γ is non-negative, since wq(γ, qf (γ))f(γ) > 0.

Finally, for the case where γH(γt) = γ, there is only one jump, at γ. The jump is

A+ κF (γt)

which is positive, given that we have shown that A ≥ 0.

To complete the proof, we use Theorem 1 in Amador and Bagwell (2013). To

apply this theorem, we set 1. (i) x0 ≡ q?t ; (ii) X ≡ {qt|qt : Γt → Q}; (iii) f
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to be given by the negative of the objective function,
∫

Γt
w(γ, qt(γ))dF (γ), as a

function of qt ∈ X; (iv) Z ≡ {(z1, z2, z3)|z1 : Γt → R, z2 : Γt → R and z3 :

Γt → R with z1, z2, z3 integrable }; (v) Ω ≡ Φ; (vi) P ≡ {(z1, z2, z3)|(z1, z2, z3) ∈
Z such that z1(γ) ≥ 0, z2(γ) ≥ 0 and z3(γ) ≥ 0 for all γ ∈ Γt}; (vii) Ĝ (which is

referred to as G in Theorem 1) to be the mapping from Φ to Z given by the left hand

sides of inequalities (9), (10) and (11); (viii) T to be the linear mapping:

T ((z1, z2, z3)) ≡
∫

Γt

z1(γ)dΛ1(γ) +

∫
Γt

z2(γ)dΛ2(γ) +

∫
Γt

z3(γ)dΨ(γ)

where Λ1, Λ2 and Ψ being non-decreasing functions implies that T (z) ≥ 0 for z ∈ P .

We have that

T (Ĝ(x0)) ≡
∫

Γt

(∫ γt

γ

q?t (γ̃)dγ̃ + U + γq?t (γ)− b(q?t (γ)) + σ

)
d(Λ1(γ)− Λ2(γ))

−
∫

Γt

(
− γq?t (γ) + b(q?t (γ))− σ

)
dΨ(γ) = 0

where U is evaluated at the q?t allocation, and where the last equality follows from

the q?t allocation and the proposed multipliers. We have found conditions under

which the proposed allocation, q?t , minimizes f(x) + T (Ĝ(x)) for x ∈ Ω. Given that

T (Ĝ(x0)) = 0, then the conditions of Theorem 1 hold and it follows that q?t solves

minx∈Ω f(x) subject to −Ĝ(x) ∈ P , which is Problem P ′t .

D.1 Proof of Corollary 1

Proof. Letting qi and γH represent qi(γt) and γH(γt), respectively, we start with the

following manipulations:

G(γ|γt) = −κF (γt) + κ
γ − b′(qi)
γ − γH

F (γ) +
1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi) +

1

α
v′(qi)

)
f(γ̃)dγ̃

= −κF (γt) + κ
γ

γ − γH
F (γ)− κ b′(qi)

γ − γH
F (γ)

+ κ
b′(qi)

γ − γH
F (γH)− κ b′(qi)

γ − γH
F (γH) +

1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi) +

1

α
v′(qi)

)
f(γ̃)dγ̃

47



= −κF (γt) +
κ

γ − γH

∫ γ

γH

(γ̃f(γ̃) + F (γ̃))dγ̃ − κ b′(qi)

γ − γH
(F (γ)− F (γH))

+
1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi) +

1

α
v′(qi)

)
f(γ̃)dγ̃

= −κF (γt) +
κ

γ − γH

∫ γ

γH

(γ̃f(γ̃) + F (γ̃)− b′(qi)f(γ̃))dγ̃

+
1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi) +

1

α
v′(qi)

)
f(γ̃)dγ̃

= −κF (γt) +
1

γ − γH

∫ γ

γH

[
κF (γ̃) +

1

α
v′(qi)f(γ̃) + (κ− 1)(γ̃ − b′(qi))f(γ̃)

]
dγ̃

= −κF (γt) +
1

γ − γH

∫ γ

γH

M2(γ̃)dγ̃,

where we use in the third equality above that γH−b′(qi)
γ−γH

F (γH) = 0 and where we define

M2(γ̃) ≡ κF (γ̃) +
1

α
v′(qi)f(γ̃) + (κ− 1)(γ̃ − b′(qi))f(γ̃).

Thus,

(γ − γH)G(γ|γt) = −κ(γ − γH)F (γt) +

∫ γ

γH

M2(γ̃)dγ̃.

Taking a derivative with respect to γ, for γ > γH , we obtain

(γ − γH)G′(γ|γt) +G(γ|γt) = −κF (γt) +M2(γ)

and thus

(γ − γH)G′(γ|γt) = M2(γ)− 1

γ − γH

∫ γ

γH

M2(γ̃)dγ̃.

It follows that, if M ′
2(γ) ≥ 0, then G′(γ|γt) ≥ 0. Now note that

M ′
2(γ) = κf(γ) +

1

α
v′(qi)f

′(γ) + (κ− 1)(γ − b′(qi))f ′(γ) + (κ− 1)f(γ)

= (2κ− 1)f(γ) + κ(γ − b′(qi))f ′(γ) + (−γ + b′(qi) + v′(qi)/α)f ′(γ).

Recall that

γ − b′(qi) ≥ 0
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for γ ≥ γH . In addition,

− γ + b′(qi) + v′(qi)/α = −γ + b′(qi) + v′(qi) +

(
1

α
− 1

)
v′(qi)

= (P (qi)− γ) +

(
1

α
− 1

)
v′(qi) ≥ 0 for γ ≥ γH

where we use that b′(qi)+v′(qi) = P (qi) and where the inequality follows from v′(qi) >

0, α ∈ (0, 1], and that P (qi) ≥ γ for all types in [γH , γt] (so that they can make profits

and cover the fixed cost σ ≥ 0). Hence,

M ′
2(γ) = (2κ− 1)f(γ) + κ(non-negative term)f ′(γ) + (non-negative term)f ′(γ).

Thus, κ ≥ 1/2 and f ′(γ) ≥ 0 together are sufficient to guarantee that M ′
2(γ) ≥ 0 and

thus that G(γ|γt) is non-decreasing for any γt. Hence, part (i) of Proposition 1 then

holds for all γt ∈ (γ, γ].

Finally note that

M ′
1(γ) = κf(γ) +

1

α
v′′(qf (γ))q′f (γ)f(γ) +

1

α
v′(qf (γ))f ′(γ).

Using q′f (γ) = 1/b′′(qf (γ)) and the definition of κ, we obtain that

M ′
1(γ) ≥ (2κ− 1)f(γ) +

1

α
v′(qf (γ))f ′(γ) ≥ 0

where the second inequality follows from κ ≥ 1/2 and f non-decreasing. Thus part

(ii) of Proposition 1 also holds for all γt ∈ (γt, γ]. We can thus use Proposition 2 to

obtain the desired result.

D.2 Proof of Lemma 4

Proof. For parts (a) and (b), recall that v′(q) = −P ′(q)q and that b′(q) = P (q) +

qP ′(q). Using equation (6), it follows that, for all q ∈ (0, qmax],

−v′(q) = a0(b′(q) + v′(q)) + b0

v′(q) = − a0

1 + a0

b′(q)− b0

1 + a0

(16)
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Integrating the above in [q0, q] where q > q0 > 0, we have that

v(q) +
a0

1 + a0

b(q) +
b0

1 + a0

q = v(q0) +
a0

1 + a0

b(q0) +
b0

1 + a0

q0

From Assumption 1, using the limit condition limq0↓0 v(q0) = limq0↓0 b(q0) = 0, we get

part (a) for all q ∈ Q.

Differentiating (16), we get that 1
α
v′′(q)
b′′(q)

= − 1
α

a0
1+a0

, and thus part (b) follows.

To show part (c), note that

wq(γ, qf (γ)) =
1

α
v′(qf (γ)) = − 1

α

a0

1 + a0

b′(qf (γ))− 1

α

b0

1 + a0

= − 1

α

a0

1 + a0︸ ︷︷ ︸
κ−1

(b′(qf (γ))︸ ︷︷ ︸
γ

−b′(qi))−
1

α

[ a0

1 + a0

b′(qi)−
b0

1 + a0︸ ︷︷ ︸
−v′(qi)

]

= (κ− 1)(γ − b′(qi)) +
1

α
v′(qi)

It follows then that

M1(γ) = κF (γ)+wq(γ, qf (γ))f(γ) = κF (γ)+(κ−1)(γ−b′(qi))f(γ)+
1

α
v′(qi)f(γ) = M2(γ)

which with qi = qi(γt) delivers part (c).

D.3 Proof of Corollary 2

Proof. For this family, we already know that if part (ii) of Proposition 1 holds globally,

then so does part (i). Taking a derivative of M1(γ) with respect to γ, and using that

wq(γ, qf (γ)) = 1
α
v′(qf (γ)) together with

dv′(qf (γ))

dγ
=

v′′(qf (γ))

b′′(qf (γ))
delivers the result.

D.4 Proof of Lemma 5

Proof. By (3), qi(γt) satisfies γt = P (qi(γt))− σ
qi(γt)

. It follows that

q′i(γt) =
1

P ′(qi(γt)) + σ/(qi(γt))2

Given that qi(γt) > qf (γt), it follows that πq(γt, qi(γt)) < 0. Hence, πq(γt, qi(γt)) =
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P ′(qi(γt))qi(γt) + π(γt, qi(γt))/qi(γt) < 0. Using that π(γt, qi(γt)) = σ, we obtain the

first result of the lemma.

For the second result, there are two cases to consider, one where γH(γt) > γ and

the other where γH(γt) = γ. For the latter case, the result is immediate. For the

former case, we have that γH(γt) = b′(qf (γH(γt))) = b′(qi(γt)) = P ′(qi(γt))qi(γt) +

P (qi(γt)). Thus,

γt − γH(γt) = −
(

σ

qi(γt)
+ P ′(qi(γt))qi(γt)

)
The first result of the lemma establishes that the bracketed expression is negative;

thus, it follows that γt > γH(γt).

E Proof of Proposition 4

Proof. First, note that q′i(γt) < 0 implies that γH(γt) is strictly increasing in γt, as

long as γH(γt) > γ. That is, there exists a γ̂ ∈ (γ, γ] such that γH(γt) = γ for all

γt ≤ γ̂ and γH(γt) > γ for all γt > γ̂. It is possible that γ̂ = γ, and thus for any level

of exclusion, all types are pooled.

Consider a situation where γ̂ < γ. Then, for γt ∈ (γ̂, γ], using the functional

forms, α = 1, the uniform distribution assumption, and that b′(qi(γt)) = γH(γt), we

have that

W ′(γt)/fU = v(qi(γt))− v′(qi(γt))qi(γt) +
qi(γt)

γt − γH(γt)

∫ γt

γH(γt)

(γ − γH(γt))dγ

= −βqi(γt)2/2− qi(γt)γH(γt) +
qi(γt)

2(γt − γH(γt))

(
γ2
t − γH(γt)

2)

=
qi(γt)

2
[−βqi(γt) + γt − γH(γt)]

where fU = 1
γ−γ denotes the uniform density.

Using that γt − γH(γt) = − σ
qi(γt)

+ βqi(γt), we obtain that W ′(γt)/fU = −1
2
σ < 0.

Thus, for all γt ∈ (γ̂, γ], W ′(γt) < 0, and thus, in an optimal allocation γt ≤ γ̂,

guaranteeing that all types are pooled. This completes the proof of part (a).

For part (b), note that the conditions imply that γ̂ < γ. To see this, note that
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if γt = γ, then qi(γt) = qi(γ) < qf (γ) under the conditions in part (b). There then

exists γ0 > γ such that qf (γ0) = qi(γt), from which it follows that γH(γt) = γ0 > γ,

a contradiction to part (a). Given that γt ≤ γ̂ < γ, part (a) implies that some types

will be excluded.

For the case where γt < γ̂, then γH(γt) = γ, and

W ′(γt)/fU = −1

2

(
σ −

(µ− γ)(µ− γ − 2βqi(γt))(qi(γt))
2

σ − β(qi(γt))2

)
.

Note that

lim
γt→γ

W ′(γt)/fU = −1

2

(
σ −

(µ− γ)(µ− γ − 2βqi(γ))(qi(γ))2

σ − β(qi(γ))2

)
.

By definition of qi, we have that (µ− βqi(γ)− γ)qi(γ) = σ. Using this, we get

(µ− γ − 2βqi(γ))qi(γ) = σ − β(qi(γ))2

and thus

lim
γt→γ

W ′(γt)/fU = −1

2

(
σ −

(µ− γ)(µ− γ − 2βqi(γ))(qi(γ))2

σ − β(qi(γ))2

)
= −1

2

(
σ − (µ− γ)qi(γ)

)
= −1

2

(
(µ− βqi(γ)− γ)qi(γ)− (µ− γ)qi(γ)

)
=

1

2
βqi(γ)2 > 0.

We have already shown that W ′(γ) < 0 for γ ∈ (γ̂, γ]. Together with the above

limiting result, and that W ′ is continuous at γ̂ (see footnote 31), it follows that the

optimal γt is interior in [γ, γ̂] and thus satisfies W ′(γt) = 0.
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