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Abstract

We analyze the Baron and Myerson (1982) model of regulation under the restric-
tion that transfers are infeasible. To do this, we extend the Lagrangian approach to
delegation problems of Amador and Bagwell (2013) to include an ex post participation
constraint that allows for the possible exclusion of some types. We report sufficient
conditions under which optimal regulation takes the simple and common form of price-
cap regulation. We identify families of demand and distribution functions and welfare
weights that satisfy our sufficient conditions. We also report conditions under which
the optimal price cap is set at a level such that no types are excluded. Using a linear
demand example, we show that exclusion of higher cost types can be optimal when
these conditions fail to hold. Our analysis also can be used to provide conditions for the
optimality of price-cap regulation when an ex post participation constraint is present
and exclusion is infeasible.

1 Introduction

The optimal regulatory policy for a monopolist is influenced by many considerations, includ-

ing the possibility of private information, the objective of the regulator, and the feasibility
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and efficiency of transfers. Simple solutions obtain in some settings. For example, in the

textbook case of a single-product monopolist with constant marginal cost and a positive

fixed cost, with all costs commonly known, a regulator that maximizes aggregate social

surplus obtains the “first-best” (“second-best”) solution by setting price equal to marginal

(average) cost when transfers are feasible and efficient (are infeasible). In other settings,

however, optimal regulation can take more subtle forms. Armstrong and Sappington (2007)

survey the nature of optimal regulation in different settings and discuss as well the design of

practical policies, such as price-cap regulation, that are frequently observed in practice. As

they emphasize, an important question is whether practical policies perform well in realistic

settings where private information may be present and transfer instruments may be limited.

In a seminal paper, Baron and Myerson (1982) consider the optimal regulation of a

single-product monopolist with private information about its costs of production. In their

model, a regulatory policy indicates, for every possible cost type, whether the monopoly is

allowed to produce at all and, if so, the output and corresponding price that it selects and the

transfer from consumers that it receives (where a negative transfer is a tax). A regulatory

policy is feasible if it is incentive compatible and satisfies an ex post participation constraint.

The regulator chooses over feasible regulatory policies to maximize a weighted social welfare

function that weighs consumer surplus no less heavily than producer surplus.1

In a standard version of the Baron-Myerson model, the monopolist incurs a commonly

known and non-negative fixed cost and is privately informed as to the level of its constant

marginal cost, where the monopolist’s marginal cost has a continuum of possible types and is

drawn from a commonly known distribution function. If the regulator gives greater welfare

weight to consumer surplus, then the optimal regulatory policy defines a non-decreasing

price schedule for active types with a positive mark up for all but the lowest cost type. By

comparison, if the regulator were to maximize aggregate social surplus, then as Loeb and

Magat (1979) observe the optimal regulatory policy would achieve a first-best outcome, with

price equal to marginal cost for all active types and transfers set so that the monopolist

receives all the surplus. In any case, production is permitted only for types such that

consumer surplus under the optimal pricing rule weakly exceeds the fixed cost of production.

In this paper, we characterize optimal regulatory policy in the Baron-Myerson model with

constant marginal costs when transfers are infeasible. Our no-transfers assumption contrasts

sharply with Baron and Myerson’s assumption that all (positive and negative) transfers are

available. We motivate our no-transfers assumption in three ways. First, as is commonly

1An alternative approach is developed by Laffont and Tirole (1993, 1986). They assume that the regulator
maximizes aggregate social surplus and that transfers are inefficient (i.e., transfers entail a social cost of
funds). Under this approach, consumers incur a cost in excess of one dollar for every dollar that is received
as a transfer by the monopolist.
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observed, regulators often do not have the authority to explicitly tax or pay subsidies.2

Second, while transfers from consumers to firms may also be achieved via access fees in two-

part tariff schemes, the scope for such transfers may be limited in practice, particularly when

universal service is sought and consumers are heterogeneous.3 Finally, in other settings, the

scope for a positive access fee may be limited by the possibility of consumer arbitrage, while

the scope for a negative access fee may be limited by the prospect of strategic consumer

behavior designed to capture “sign-up” bonuses. In view of these considerations, we remove

the traditional assumption that all transfers are available and consider the opposite case in

which all transfers are infeasible. Specifically, we assume that the regulated firm is restricted

to a uniform price (i.e., linear pricing).4 As our main finding, we report sufficient conditions

under which price-cap regulation emerges as the optimal regulatory policy.

As mentioned above, price-cap regulation is a common form of regulation. The appeal

of price-cap regulation is often associated with the incentive that it gives to the regulated

firm to invest in endogenous cost reduction.5 By contrast, we establish conditions for the

optimality of price-cap regulation in a model in which costs are private and exogenous. We

note further that our no-transfers assumption is critical: price-cap regulation is not optimal

in the standard Baron-Myerson model with transfers. Our finding thus indicate that this

practical regulatory policy may perform not just well but optimally when a regulator faces

a privately informed monopolist and transfers are infeasible.

To develop this finding, we consider a “regulator’s problem” in which the regulator

chooses a menu of permissible outputs, with the understanding that the output choice in-

tended for a monopolist with a given cost type must be the best choice for the monopolist

relative to all other permitted output choices. In addition to this incentive compatibility

constraint, the regulator faces an ex post participation, or individual rationality (IR), con-

straint: if the regulator seeks a positive output from a monopolist with a given cost type,

then the monopolist must earn more by producing this output than by shutting down and

avoiding the non-negative fixed cost of production. Importantly, the regulator may choose a

2For further discussion, see, e. g., Armstrong and Sappington (2007, p. 1607), Baron (1989, p. 1351),
Church and Ware (2000, p. 840), Joskow and Schmalensee (1986, p. 5), Laffont and Tirole (1993, p. 130)
and Schmalensee (1989, p. 418).

3As Laffont and Tirole (1993, p. 151) explain, “optimal linear pricing is a good approximation to optimal
two-part pricing when there is concern that a nonnegligible fixed premium would exclude either too many
customers or customers with low incomes whose welfare is given substantial weight in the social welfare
function.”

4In this respect, we follow the lead of Schmalensee (1989), who also examines a regulatory model with
linear pricing schemes. Schmalensee (1989, p. 418) provides additional motivation for the practical relevance
of linear pricing schemes in regulatory settings.

5For further discussion, see, for example, Armstrong and Sappington (2007, p. 1608) and the references
cited therein.
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menu of permissible outputs such that, for some cost types, the monopolist elects to produce

zero output and thus earn a profit of zero. In other words, and as in the original Baron-

Myerson model, the regulator may design the regulatory policy so as to “exclude” some cost

types from production.

The IR constraint plays an important role in our analysis. If we were to ignore this

constraint, then the regulator’s problem would take the form of a traditional delegation

problem and fit into the framework of Amador and Bagwell (2013). We could then use the

sufficiency theorems developed in that paper and provide conditions under which a simple

price cap (i.e., a quantity floor) is optimal. We show, however, that the IR constraint in

fact would be violated for higher cost types when this simple price cap is used. Thus, this

solution is not feasible for the regulator problem that we analyze here.

We consider instead a price-cap allocation where the cap is placed at a price level such

that a threshold cost type earns zero profit and is thus indifferent to shut down. No exclusion

occurs if the threshold cost type corresponds to the highest cost type in the full support of

possible cost types, while exclusion occurs when the threshold cost type falls below the

highest possible cost type. Within the set of non-excluded cost types, higher cost types pool

at the price cap, whereas lower cost types may select their monopoly prices. It is also possible

that the price cap falls below the monopoly price for the lowest possible cost type, in which

case all non-excluded cost types pool at the price cap. The central task of our analysis is to

identify sufficient conditions under which the described price cap with possible exclusion is

optimal. We also seek to determine sufficient conditions that indicate when actual exclusion

does or does not occur.

To establish our results, we proceed in three main steps. First, we consider the “regula-

tor’s truncated problem,” wherein the regulator allocates production for cost types up to an

exogenous upper-bound cost type and is not allowed to exclude any types in this truncated

set. The upper-bound cost type can be fixed at any value that is above the lowest possible

cost type and at or below the highest possible cost type in the full support. We then obtain

sufficient conditions under which the optimal allocation for the regulator’s truncated prob-

lem is a price cap set at a level such that the upper-bound cost type earns zero profit and is

thus indifferent between producing or not. Second, we argue that this truncated allocation

remains feasible when extended to the full support of possible costs if cost types above the

upper-bound cost type are excluded (assigned zero output). Finally, we characterize the

optimal level of exclusion. This exercise amounts to a single variable optimization problem

defined over the upper-bound, or threshold, cost type.

Our first proposition establishes a general set of sufficient conditions under which the

described price-cap allocation solves the regulator’s truncated problem. The conditions are
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defined in terms of general relationships between functions that describe the regulator’s

welfare, the monopolist’s profit and the distribution of cost types, respectively. We then

provide a second proposition which establishes that, if the sufficient conditions for our first

proposition hold for any upper-bound cost type, then a price-cap allocation with possible

exclusion is optimal within the set of all feasible allocations for the regulator’s problem. A

key ingredient in making this argument is that the optimal price-cap allocation is such that

the threshold cost type is indifferent to shut down.

We also provide several results that facilitate the application of our propositions. Three

approaches are developed. First, we show that our sufficient conditions hold if the density

is non-decreasing over the full support and if a “relative concavity” condition holds that

concerns the relative curvature of the consumer surplus and profit functions, with each

expressed as a function of quantity. The relative concavity condition is more likely to hold

when ratio of the concavity of the consumer surplus function to that of the profit function

is higher and when the welfare weight attached to profit is lower. Second, we identify a

family of demand functions under which the sufficient conditions for our propositions hold

if a simple inequality is satisfied. The inequality condition holds when the density is non-

decreasing over the full support, but it can hold as well when the density is decreasing over

part or all of the full support. To illustrate the power of this approach, we show that the

family includes linear demand, constant elasticity demand and log demand functions, and

we derive and interpret the corresponding inequality condition for each of these examples.

The third approach is to check the sufficient conditions for our propositions directly. We

illustrate this approach for an example with an exponential demand function.

Finally, we turn to the third step of our analysis and identify conditions under which

actual exclusion does or does not occur, respectively. Our third proposition establishes that

no exclusion is optimal under a general set of conditions; specifically, if the density is non-

decreasing over the full support and the consumer surplus function is weakly concave, and

if the sufficient conditions for our first proposition hold for any upper-bound cost type, then

the optimal regulatory policy entails no exclusion and a price cap set at a price level such

that the IR constraint for the highest cost type is binding. Thus, under these conditions,

optimal regulation takes the form of a standard second-best price cap that delivers zero profit

for the highest cost type. We note that the consumer surplus function is weakly concave in

quantity for the log demand and constant elasticity demand examples.

We also analyze the linear demand example. The consumer surplus function associated

with this demand function is strictly convex, and so our third proposition cannot be applied.

In our fourth and final proposition, we show that, if the distribution of cost types is uniform,

the social planner maximizes aggregate social welfare, and the fixed cost of entry is strictly
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positive, then (a) the price cap is below the monopoly price of the lowest cost type and

thus induces pooling among all non-excluded types, and (b) some higher cost types must

be excluded, provided that not all types would pool at the cap were no exclusion to occur

(i.e., provided that the sub-monopoly price that generates zero profit for the highest possible

cost type is above the monopoly price of the lowest possible cost type). This proposition

demonstrates that exclusion of higher cost types can be optimal in some settings.6 The

setting of linear demand and a uniform distribution is often treated in the literature, and

so it may be of some separate interest that we establish conditions for this example under

which a price cap is used and higher cost types are excluded.7

The described results characterize optimal regulatory policy for market settings in which

exclusion for some cost types is feasible. Our results thus directly apply when the monopolist

provides an inessential service for a given market or region. Since Baron and Myerson (1982)

also focus on settings where exclusion is feasible, our findings also offer a characterization of

how their analysis extends when transfers are not feasible.

We are interested as well in the “no-exclusion” scenario, wherein the regulator is con-

strained to ensure that the monopolist earns non-negative profit while providing positive

output under all cost realizations. To motivate this scenario, we note that the monopolist

may provide essential services with poor substitution alternatives.8 An advantage of our

three-step approach is that our analysis also can be used to characterize optimal regulatory

policies for the no-exclusion scenario. To this end, we may refer to our first proposition for

the special case in which the upper-bound cost type equals the highest cost type in the full

support. Our first proposition then provides conditions under which optimal regulation for

the no-exclusion scenario takes the form of a price-cap policy, where the price cap is set at the

second-best level that generates zero profit for a monopolist with the highest possible cost

type. Likewise, we can facilitate the application of our results to this scenario by using the

three approaches described above. Thus, for example, the described price-cap allocation is

optimal for the no-exclusion scenario if the demand function takes a linear, constant elastic-

6See Armstrong (1996) for an analysis of optimal exclusion in the different context of a model of multi-
product nonlinear pricing when the type space is multidimensional.

7As discussed below, Alonso and Matouschek (2008) consider this example for a regulation model without
transfers but in the absence of an IR constraint. Baron and Myerson (1982) also illustrate their findings
using this example.

8Other motivations exist as well. For example, the regulator may face a profit constraint whereby the
monopolist must enjoy a minimum rate of return for capital expenditures. Alternatively, we can imagine
an extended setting in which the legislature chooses a regulatory scheme that is implemented with limited
discretion by the regulator, where the regulator faces a commitment problem and cannot induce shut down.
For example, suppose that if the legislature selects a price-cap scheme, then the regulator must utilize such a
scheme but has some limited discretion concerning the level at which the price cap is placed. If the regulator
is unable to commit to allow the monopolist to shut down, then the regulator in effect can only impose a
price cap at a level that avoids shut down for any cost type.
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ity or log form and if a simple inequality condition holds, respectively, where the inequality

condition is sure to hold if the density is non-decreasing over the full support.

Our work is related to research on optimal delegation. The delegation literature begins

with Holmstrom (1977), who considers a setting in which a principal faces a privately in-

formed and biased agent and in which contingent transfers are infeasible. The principal

then selects a set of permissible actions from the real line, and the agent selects his pre-

ferred action from that set after privately observing the state of nature.9 A key goal in

this literature has been to identify general conditions under which the principal optimally

defines the permissible set as an interval. Alonso and Matouschek (2008) consider a setting

with quadratic utility functions and provide necessary and sufficient conditions for interval

delegation to be optimal. Extending the Lagrangian techniques of Amador et al. (2006),

Amador and Bagwell (2013) consider a general representation of the delegation problem and

establish necessary and sufficient conditions for the optimality of interval delegation.10

Our analysis of the regulator’s truncated problem builds on the Lagrangian methods used

by Amador and Bagwell (2013), but a novel feature of the current paper is that the analysis

is extended to include an ex post participation constraint.11 Indeed, and as mentioned

previously, this constraint would be violated for higher cost types, if we were to apply results

from Amador and Bagwell for the delegation problem without such a constraint. A further

distinction of the current paper is that, in our analysis of the regulator’s problem, we allow

for the possibility of excluded types and show further that actual exclusion can be optimal.

In that case, the regulation contract can be understood as providing a disconnected set of

quantities, namely, a quantity of zero for excluded types combined with an interval of positive

quantities for non-excluded types. The optimal regulation contract is then clearly distinct

from an interval allocation. We expect our methods will facilitate the application of optimal

9A large literature follows Holmstrom’s work. See, for example, Amador and Bagwell (2012), Amador
and Bagwell (2018), Amador et al. (2018), Amador et al. (2006), Ambrus and Egorov (2017), Armstrong and
Vickers (2010), Burkett (2016), Frankel (2014), Frankel (2016), Guo (2016), Koessler and Martimort (2012),
Martimort and Semenov (2006), Melumad and Shibano (1991) and Mylovanov (2008). Related themes also
arise in repeated games with private information; see Athey et al. (2004), Athey et al. (2005) and Halac and
Yared (2019).

10We note that a cap can be understood as a form of interval delegation, in which the maximum (minimum)
action is defined by the cap (the lowest “flexible” choice for any agent type).

11Amador and Bagwell (2018) also build on the Lagrangian methods used by Amador and Bagwell (2013).
The focus of Amador and Bagwell (2018), however, is very different from that of the current paper. Amador
and Bagwell (2018) consider an optimal delegation problem with a two-dimensional action set, where one
of the actions corresponds to ”money burning,” and they provide sufficient conditions under which money
burning expenditures are used in an optimal delegation contract. Building on work by Ambrus and Egorov
(2017), Amador and Bagwell (2018) also consider an application with an ex ante participation constraint
under the assumption that ex ante (non-contingent) transfers are feasible. The participation constraint can
then be addressed using standard methods. In the present paper, by contrast, the participation constraint
must hold ex post and cannot be addressed using standard methods since transfers are infeasible.
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delegation theory to other settings in which participation constraints play an important role.

Alonso and Matouschek (2008) were the first to argue that the monopoly regulation prob-

lem can be understood as a delegation problem. As an application of their analysis, they

study optimal regulation when costs are privately observed by the regulated firm and trans-

fers are infeasible, and they report conditions under which price-cap regulation is optimal.

Our analysis differs in two ways. First, Alonso and Matouschek assume that the monopolist

produces regardless of its cost type and do not include a participation constraint. Indeed,

their price-cap solution would violate an ex post participation constraint, since the cap is

below the marginal cost of the highest-cost firm. By contrast, we include an ex post partic-

ipation constraint, allow for exclusion, and consider as well the setting in which the ex post

participation constraint holds but exclusion is infeasible. When exclusion is not optimal or is

infeasible, the optimal price cap in our model is placed at a higher level than in their analysis

and generates zero profit for the highest-cost firm. Second, Alonso and Matouschek assume

that demand is linear and the regulator maximizes aggregate social surplus. We consider a

more general family of demand functions and regulator objectives, and we provide conditions

under which exclusion is optimal when demand is linear.

Recent work by Kolotilin and Zapechelnyuk (2019) is also related. They examine opti-

mal delegation in a “linear delegation” framework and, as an application, provide conditions

under which a price cap is the optimal regulatory policy in a delegation setting with a partic-

ipation constraint. The two papers are complementary. We highlight three distinct features

of our analysis. First, following Baron and Myerson (1982), we assume that the monopolist

has a non-negative fixed cost; by contrast, Kolotilin and Zapechelnyuk (2019) build from the

assumption that the monopolist has no fixed costs. Second, the linear delegation framework

corresponds in the regulation setting to the family of demand functions that we identify un-

der which the sufficient conditions for our propositions hold if a simple inequality is satisfied;

however, as noted above, we can go beyond this family and check the sufficient conditions

for our propositions directly, as we do for the exponential demand function. Third, the two

papers employ different proof methods: we analyze the delegation problem directly using

a Lagrangian approach, whereas Kolotilin and Zapechelnyuk (2019) analyze the delegation

problem by drawing a novel link to the literature on Bayesian persuasion.

The remainder of the paper is organized as follows. Section 2 sets up the regulator’s prob-

lem, and Section 3 characterizes the optimal regulatory policy when attention is restricted to

allocations that can be induced by caps. Section 4 then focuses on the regulator’s truncated

problem and develops general sufficient conditions for the optimality of a cap allocation in

the set of all allocations that satisfy incentive compatibility and participation constraints.

Section 5 considers the global optimality of the cap allocation when attention is widened to
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include all types and develops further results and approaches that facilitate the application

of our findings. Section 6 identifies conditions under which actual exclusion does or does not

occur, respectively. Section 7 concludes. The Appendix contains remaining proofs.

2 The Regulator’s Problem

In this section, we present our basic model and formally define the problem that confronts

the regulator. We also identify the bias in the monopolist’s unrestricted output choice.

We consider a monopolist facing an inverse demand function given by P (q) where q is

the quantity produced. The production quantity q resides in the set Q ≡ [0, qmax], which is

an interval of the real line with non-empty interior. The function P (q) is well-defined and

finite for all q ∈ (0, qmax].

We assume that the monopolist’s marginal cost of production is constant and given by

γ. The marginal cost γ is private information to the monopolist and is distributed over the

support Γ = [γ, γ] where γ > γ > 0 with a differentiable cumulative distribution function

F (γ). The associated density, f(γ) ≡ F ′(γ), is strictly positive and differentiable.

We assume that the regulator has no access to transfers or taxes, and can only impose

restrictions on the quantity produced by the monopolist. As discussed in the Introduction,

our no-transfers assumption means that the regulator cannot impose taxes or subsidies, and

it implicitly implies as well that the monopolist cannot use an access fee. We thus assume

that the monopolist selects a uniform price, with the regulator determining the feasible

menu of such prices through the selection of a feasible menu of quantities. We allow that

the regulator’s objective is to maximize a weighted social welfare function in which profits

receive weight α ∈ (0, 1]. The regulator maximizes aggregate social surplus when α = 1 and

gives greater weight to consumer interests when α < 1.

We impose the following assumptions on primitives:

Assumption 1. We impose the following assumptions:

(a) P (q) is twice-continuously differentiable for q ∈ (0, qmax] with P ′(q) < 0 < P (q).

(b) limq↓0 P (q) > γ and P (qmax) < γ.

(c) There exist functions b(q), v(q), and w(γ, q) which are twice-continuously differentiable
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for q ∈ (0, qmax] and that satisfy

b(q) ≡ P (q)q,

v(q) ≡
∫ q

0

P (z)dz − P (q)q,

w(γ, q) ≡ −γq + b(q) +
1

α
v(q),

with limq↓0 b(q) = 0 and limq↓0 v(q) = 0. We define b(0) = v(0) = w(γ, 0) = 0.

(d) b′′(q) < 0 and wqq(γ, q) = b′′(q) + 1
α
v′′(q) ≤ 0 for all q ∈ (0, qmax].

(e) wq(γ, qmax) < 0.

In this assumption, b(q) defines the total revenue for the monopolist, v(q) represents

consumer surplus, and w(γ, q) represents the welfare to the regulator (gross of the fixed

cost). Using Assumption 1, we obtain that

v′(q) =− qP ′(q) > 0 for all q > 0.

Similarly, using Assumption 1, second derivatives take the following forms and signs:

wqq(γ, q) = b′′(q) +
1

α
v′′(q)

= P ′′(q)q + 2P ′(q)− 1

α
[P ′′(q)q + P ′(q)] ≤ 0 for q > 0.

Notice that P ′(q) < 0 implies that w is strictly concave when α = 1. Importantly, we make

no assumption as regards the sign of v′′(q). If marginal revenue is steeper than demand

(i.e., b′′(q) < P ′(q)), then v′′(q) > 0.12 For example, as we discuss in greater detail below,

v′′(q) > 0 when demand is linear, and v′′(q) < 0 when demand exhibits constant elasticity.

Assumption 1 also includes various regularity conditions. According to part (b), the

inverse demand function exceeds the highest marginal cost for quantities that are sufficiently

close to zero and falls below the lowest marginal cost for quantities that are sufficiently close

to qmax. Part (e) ensures that the welfare-maximizing quantity is below qmax, even when

marginal cost is at its lowest possible value.

We envision the regulator as choosing a menu of permissible outputs, with the under-

standing that a monopolist with cost type γ selects its preferred output from this menu.

Thus, if the regulator seeks to assign an output q(γ) to a monopolist with type γ, then an

incentive compatibility constraint must be satisfied. As well, if the regulator seeks a positive

12 This condition holds if the demand function is log-concave but fails otherwise.
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output from a monopolist with type γ, then type γ must earn more by producing q(γ) > 0

than by shutting down and avoiding the fixed cost of production, σ ≥ 0.

We allow that the regulator may choose a menu of permissible outputs such that some

types produce zero output, incur no fixed cost, and thus earn a profit of zero. That is, the

regulator may “exclude” some types from production.

The regulator’s problem can then be written as follows:

(P1) max
q:Γ→Q

∫
Γ

(w(γ, q(γ))− 1(q(γ))σ) dF (γ) subject to:

γ ∈ arg max
γ̃∈Γ
−γq(γ̃) + b(q(γ̃))− 1(q(γ̃))σ for all γ ∈ Γ

0 ≤ −γq(γ) + b(q(γ))− 1(q(γ))σ, for all γ ∈ Γ

where 1(·) is an indicator function such that 1(q) = 1 if q > 0 and 1(q) = 0 if q = 0.

The first constraint in this problem is the incentive compatibility constraint, while the

second constraint is the ex post participation or individual rationality (IR) constraint. Notice

that the IR constraint requires that if a type produces, it needs to earn enough profit to

cover its fixed cost, σ. Notice also that the constraints allow for the possibility of types for

which q(γ) = 0, since the IR constraint as represented here holds when q(γ) = 0. We say

that an allocation is feasible if it satisfies both of these constraints.

The flexible allocation. Before moving on to characterize the solution to the regulator’s

problem, it is convenient to define qf (γ) as the allocation that a monopolist would choose if

it were forced to produce but were otherwise unrestricted by the regulator. To this end, we

let π(γ, q) be the monopolist’s profit function (gross of the fixed cost),

π(γ, q) ≡ −γq + b(q),

and we then define the monopolist’s flexible allocation as

qf (γ) = arg max
q∈Q

π(γ, q).

The flexible allocation is simply the monopoly output as a function of the monopolist’s cost

type. The associated first-order condition is given by

b′(q)− γ = 0.

We note that the limq→0 P (q) > γ and b(0) = 0 imply that qf (γ) > 0. Since P (qmax) < γ,
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we know that qf (γ) < qmax. With these boundary results in place, we have that qf (γ) is

differentiable, with q′f (γ) = 1/b′′(qf (γ)) < 0 and qf (γ) ∈ (0, qmax) for all γ ∈ Γ. Note as well

that P (qf (γ)) > γ and thus π(γ, qf (γ)) = −γqf (γ) + b(qf (γ)) > 0 for all γ ∈ Γ.

We further assume that it is optimal for all types to produce if given the ability to set

their monopolist quantity:

Assumption 2. For all types γ ∈ Γ, π(γ, qf (γ)) > σ.

An implication of Assumption 2 is that, for any given cost type, the regulator’s welfare is

higher when a monopolist with that cost type sets its monopoly output than when it shuts

down and produces zero output. Thus, if the solution to the regulator’s problem excludes a

given cost type from production, then it must be that the regulator is able to improve the

allocation for other cost types through this means.

Given the interiority of qf (γ), we may use the associated first-order condition and estab-

lish the following relationship:

wq(γ, qf (γ)) =
1

α
v′(qf (γ))

= − 1

α
P ′(qf (γ))qf (γ)

=
1

α
[P (qf (γ))− γ] > 0 for all γ ∈ Γ.

Thus, the regulator model is characterized by downward or negative bias : the agent’s (i.e.,

the monopolist’s) preferred q is too low from the principal’s (i.e., the regulator’s) perspective.

The presence of negative bias suggests the possibility of a solution that imposes a lower

bound on q for higher types (or equivalently a cap on the price for higher types). But note

also that the unrestricted monopolist profits are decreasing in γ; thus, it is also possible

that such a regulatory restriction could exclude higher-cost types from producing, if as a

consequence they are unable to cover their fixed cost of production.

We show now that, if any exclusion occurs, then the excluded types are always defined

by a threshold type, γt ∈ Γ:

Lemma 1. In any feasible allocation q(·), there exists a cut-off γt ∈ [γ, γ] such that q(γ) = 0

for γ > γt and q(γ) > 0 for γ < γt. In addition, if γt ∈ (γ, γ), then −γtq(γt) + b(γt) = σ.

Proof. Suppose to the contrary that for some γ1 and γ2 with γ ≤ γ1 < γ2 ≤ γ, we have that

q(γ1) = 0 < q(γ2). A monopolist with type γ1 would then gain by violating the incentive

compatibility constraint and selecting instead the output intended for type γ2 :

−γ1q(γ2) + b(q(γ2))− σ > −γ2q(γ2) + b(q(γ2))− σ ≥ 0

12



where the first inequality follows since q(γ2) > 0 and γ1 < γ2, and the second inequality

follows from the IR constraint for a monopolist with type γ2. As a result, type γ1 prefers to

produce q(γ2) rather than not producing and getting a payoff of 0.

For the second part, suppose that for γt ∈ (γ, γ), −γtq(γt) + b(q(γt)) > σ. Then, for

all sufficiently small ε > 0, we have that −(γt + ε)q(γt) + b(q(γt)) > σ. As a result, type

γ1 = γt + ε will prefer to produce rather than not, a contradiction of the cut-off property.

Suppose instead that −γtq(γt) + b(q(γt)) < σ, so type γt strictly prefers not to produce. For

all sufficiently small ε > 0, we have that −(γt − ε)q(γt − ε) + b(q(γt − ε)) > σ, by the cut-off

property and strict monotonicity of the profit function in γ when q > 0. But this implies

that −γtq(γt − ε) + b(q(γt − ε)) > σ − εq(γt − ε), and thus, for sufficiently small ε, type

γt would strictly prefer to produce given Assumption 2 and choose type γt − ε’s choice, a

violation of feasibility.

If we were to ignore the IR constraint, the regulator’s problem would fit into the frame-

work developed by Amador and Bagwell (2013), and we could use the sufficiency theorems in

that paper to derive conditions under which a simple cap allocation is optimal.13 However,

as we show below, the IR constraint will always be violated if ignored.

3 Optimality Within the Set of Cap Allocations

In this section, we study cap allocations when the IR constraint is ignored and also when

exclusion is possible. Our analysis clarifies the role of the IR constraint and identifies a

candidate allocation for the solution of the regulator’s problem.

3.1 The case without an IR constraint

It is helpful to solve the regulator’s problem under the restriction that the regulator can

choose only among cap allocations, while ignoring the IR constraint. Let us define a cap

allocation as follows:

Definition 1. A cap allocation indexed by x is an allocation qc(γ;x) such that

qc(γ;x) =

qf (γ) ; if qf (γ) ≥ x

x ; otherwise

13One further difference is that the flexible allocation (i.e., the ideal allocation for the monopolist or agent)
is upward sloping in the framework of Amador and Bagwell (2013) while the flexible allocation is downward
sloping in the current setting. This difference could be easily addressed with a straightforward notational
modification, in which q is re-defined as the extent to which actual output falls short of some upper bound.
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for all γ ∈ Γ.

It is straightforward to confirm that a cap allocation is always incentive compatible. Types

that would prefer to produce an amount higher than x are unconstrained and thus choose to

produce their flexible output. Types that would prefer to produce an amount lower than x

are constrained and end up producing x. Naturally, this implies that there exists a critical

type γc, defined as follows:14

Definition 2. Given x ∈ Q, let γc(x) be the unique value in Γ such that qf (γ) > x for all

γ ∈ [γ, γc(x)) and qf (γ) < x for all γ ∈ (γc(x), γ].

We allow in the definition of γc(x) that γc(x) = γ, in which case x ≥ qf (γ), so that

the flexible output for all types above γ is below x. Notice also that the allocation qc(γ;x)

actually defines a quantity floor rather than a cap. We still refer to this allocation as a

cap allocation, since it corresponds to a cap on permissible prices and links thereby with

the literature on price-cap regulation. Note also that the cap allocation only has bite in

restricting the monopolist’s choice if x > qf (γ), as otherwise the monopolist selects its

flexible output for all types.

We define an optimal simple cap allocation to be an optimal cap allocation when the IR

constraint is ignored and all types produce. That is, the optimal simple cap allocation solves

max
x≥qf (γ)

W c(x)

where W c(x) represents the regulator’s welfare:

W c(x) ≡
∫ γc(x)

γ

w(γ, qf (γ))dF (γ) +

∫ γ

γc(x)

w(γ, x)dF (γ)− σ

The following lemma provides a necessary condition for an optimal simple cap allocation:15

Lemma 2. The cap allocation indexed by x is an optimal simple cap allocation only if

x > qf (γ) and ∫ γ

γc(x)

wq(γ, x)dF (γ) = 0

Proof. In the appendix.

14Here and in the rest of the paper, we use the convention that the intervals [x, x) and (x, x) correspond
to the empty set.

15The existence of an optimal simple cap allocation follows from standard arguments, given Assumption
1. The first-order condition presented in Lemma 2 is necessary but not sufficient for the characterization of
an optimal simple cap allocation, since the first-order condition could also characterize a minimum.
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In the absence of a participation constraint, we could use results from Amador and Bagwell

(2013) and establish a general set of environments under which the optimal simple cap

allocation is optimal over the full class of incentive compatible allocations. As we now argue,

however, the presence of an IR constraint implies that the optimal simple cap allocation is

not feasible.

The basic point can be understood using a graphical argument. The graph on the right

in Figure 1 illustrates the optimal simple cap allocation in bold (for the case where γc is

in the interior of Γ). This allocation is illustrated relative to the flexible allocation, qf (γ),

and the regulator’s ideal (i.e., efficient) allocation, qe(γ), which we define as the allocation

that maximizes w(γ, q).16 Notice that qe(γ) is downward sloping and that qe(γ) > qf (γ),

where the inequality reflects the aforementioned downward bias. For given γ, qe(γ) induces

a price equal to marginal cost (i.e., P (qe(γ)) = γ) when α = 1. When α < 1, the regulator’s

ideal allocation entails even higher quantities and thus drives price below marginal cost.

The optimal simple cap allocation is such that the cap is ideal for the regulator on average

for affected types (i.e., for γ ≥ γc). The graph on the left in Figure 1 illustrates the same

information in terms of the induced prices, which are also depicted in bold. As this graph

illustrates, the optimal simple cap allocation places the price cap at a level that is ideal for

the principal on average for affected types. This graph also suggests that the participation

constraint is violated for the highest types when the optimal simple cap allocation is used.

For type γ, the optimal price cap lies below the regulator’s ideal price, P (qe(γ)), which equals

γ when α = 1 and is less than γ when α < 1. The optimal price cap is thus strictly below γ;

hence, since the fixed cost σ is non-negative, the IR constraint must fail for the highest-cost

type when the optimal simple cap allocation is used.

γ

P
P (qf (γ))

P (qe(γ))

γc γ
γ

q

qe(γ)

qf (γ)

γc γ

Figure 1: Optimal Simple Cap Allocation Fails IR.

16We assume for this graphical analysis that qe(γ) is uniquely determined.
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To develop this point with full details, let πc(γ;x) = b(qc(γ;x))− γqc(γ;x). The partici-

pation constraint is equivalent to πc(γ;x) ≥ σ for all γ ∈ Γ. Note that πc(γ;x) is continuous,

and that

π′c(γ;x) =

(b′(qc(γ;x))− γ)q′c(γ;x)− qc(γ;x) = −qf (γ) < 0 ; γ ∈ (γ, γc(x))

−qf (γc(x)) < 0 ; γ ∈ (γc(x), γ)

Hence, πc is strictly decreasing in γ. So to check whether the IR constraint holds it suffices

to check whether πc(γ;x) ≥ σ, that is, whether the allocation is individually rational for the

highest cost type. We have the following lemma:

Lemma 3. The optimal simple cap allocation indexed by x violates the IR constraint for the

highest types.

Proof. Recall from Lemma 2 that x > qf (γ) and
∫ γ
γc(x)

wq(γ, x)dF (γ) = 0. Using wqγ(γ, q) =

−1 < 0, wq(γ, x) < 0 follows. Next, observe that wq(γ, x) = −γ+P (x)+(1−α
α

)(−P ′(x)x) < 0,

and thus P (x)− γ < (1−α
α

)(P ′(x)x) ≤ 0 given that P ′(x) < 0 and α ∈ (0, 1]. We then have

that π(γ, x) = (P (x) − γ)x < 0 ≤ σ, and thus the IR constraint is violated for the highest

type.

There are two ways a regulator could in principle deal with the problem that the optimal

simple cap allocation violates the IR constraint. First, it could decide not to be so tough, and

choose a cap that gives sufficient flexibility so that all types choose to produce. Alternatively,

it could choose a cap that is sufficiently tight that some types choose not to produce.17 This

leads us to consider the “best” cap allocation that satisfies the IR constraint while allowing

types to be excluded from production. We proceed to characterize the class of allocations

with caps and exclusion.

3.2 IR constraint and exclusion

Consider a situation where the regulator chooses a cap on the price that can be charged, and

as a result, some high-cost types may choose not to produce. This is a cap allocation with

potential exclusion, and it is defined by a quantity x such that any type is free to choose

between producing a quantity higher or equal to x, or not producing at all:

17As mentioned in the Introduction, we are also interested in the scenario where the regulator is constrained
to ensure that all types produce. An advantage of our solution approach is that the optimal form of regulation
for the “no-exclusion” scenario can be characterized as a by-product of our proof for the general case in which
exclusion is allowed.
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Definition 3. A cap allocation with potential exclusion indexed by x is an allocation q(γ;x)

such that

q(γ;x) =


qf (γ) ; if qf (γ) ≥ x,

x ; if qf (γ) < x and − γx+ b(x)− σ ≥ 0,

0 ; otherwise,

for all γ ∈ Γ.

Note that similar to before, a cap allocation with potential exclusion is incentive com-

patible. Without loss of generality, we can restrict attention to cap allocations such that

x ≥ q ≡ qf (γ), as no type will ever choose to produce below qf (γ), if given the choice to

produce more. Similarly, we can restrict attention to cap allocations such that x ≤ q where

q > qf (γ) is the value that satisfies −γq + b(q) = σ. Imposing a bound x above q is equiv-

alent to assigning no production for all types (as not even the lowest cost type is willing to

produce that much), and hence considering restrictions above that is unnecessary. Note that

our assumptions guarantee q ∈ Q.

Figure 2 presents a graphical representation of a cap allocation with exclusion where a

non-zero measure of types are excluded, some types are constrained at the cap, and some

other types are choosing their monopoly allocation. To describe such an allocation, re-

call that, from Lemma 1, we know that any allocation with exclusion satisfies a threshold

property: types above some type γt are excluded from production, while types below γt

produce. Thus, given a bound x, let γt(x) ∈ [γ, γ] be the associated exclusion thresh-

old. That is, γt(x) is such that maxq≥x {−γq + b(q)− σ} < 0 for all γ ∈ (γt(x), γ] and

maxq≥x {−γq + b(q)− σ} > 0 for all γ ∈ [γ, γt(x)).

However, not all the types that produce are able to do so at their monopoly level. Types

with a cost smaller than γc(x) would choose their monopoly level if forced to produce, while

types above γc(x) would choose the cap if forced to produce. Note that γc(x) ≤ γt(x) with

strict inequality if q < x < q.

We can thus write the welfare generated by a cap allocation with exclusion as:

W (x) ≡
∫ γc(x)

γ

[w(γ, qf (γ))− σ] dF (γ) +

∫ γt(x)

γc(x)

[w(γ, x)− σ] dF (γ) (1)

where the first term represents the regulator’s payoff from giving flexibility to types below

γc(x), the second term represents the payoffs generated from types that produce at the cap,

x, and where the payoff of the excluded types is zero.

Let x? be such that x? ∈ argmaxx∈[q,q]W (x); that is, x? represents the optimal cap that
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could be imposed.18 Given this cap x?, the associated cap allocation q? can be written as:

q?(γ) =


qf (γ) γ ∈ [γ, γc(x

?))

x? γ ∈ [γc(x
?), γt(x

?)]

0 γ ∈ (γt(x
?), γ]

(2)

This cap allocation with exclusion q? is our candidate allocation for the solution to the

regulator’s problem. Our goal is thus to determine sufficient conditions under which we can

be certain that q? is also optimal within the set of all feasible allocations.

γ

q

qe(γ)

qf (γ)

excluded types

x

γc(x) γt(x) γγ

Figure 2: A Cap Allocation with Exclusion. The solid thick line represents a cap allocation
with exclusion.

4 Towards Sufficient Conditions

We return now to consider the solution to the regulator’s problem, Problem P1. As a gen-

eral matter, we do not know whether a cap allocation with or without exclusion is optimal.

Indeed, solving the regulator’s problem, Problem P1, directly seems difficult, since the pos-

sibility of excluding some types must be considered. We pursue an alternative approach, one

that divides the problems into several sub-problems.

The main idea is as follows:

1. Rather than working with the lower bound on production, we work with the excluded

types directly. In particular, based on Lemma 1, we fix a given threshold for excluded

18The existence of x? follows from standard arguments, given Assumption 1.
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types, γt, and consider the problem of allocating production for types below γt while

ignoring the allocation for types higher than γt. That is, we restrict attention to the

set of types [γ, γt] and study the problem for a regulator that only considers types in

that truncated set and is not allowed to exclude any types in that set from production.

We obtain conditions under which an optimal allocation in this truncated problem is

a cap allocation with a cap at a level such that the threshold or upper-bound type, γt,

is indifferent between producing or not.

2. Next, we argue that such truncated allocation is incentive compatible when extended

to the entire set [γ, γ] by giving types above γt zero output. This implies that the

optimal allocation that results from considering only the truncated set is also optimal

when considering the entire set of types for a given level of exclusion.

3. We then look for the best allocation by varying the level of exclusion, which in our

case is indexed by γt. This is a single variable optimization problem.

Towards this goal, let us first consider the regulator’s truncated problem.

4.1 The Regulator’s Truncated Problem

For this problem, we fix γt ∈ (γ, γ] and define Γt(γt) ≡ [γ, γt].
19 The regulator’s truncated

problem is to find an allocation, qt : Γt(γt) → Q, that maximizes its payoff subject to the

feasibility constraints and that no type in set Γt(γt) is excluded.20 The problem is

max
qt:Γt(γt)→Q

∫
Γt(γt)

(w(γ, qt(γ))− σ) dF (γ) subject to: (Pt)

γ ∈ arg max
γ̃∈Γt(γt)

{−γqt(γ̃) + b(qt(γ̃))− σ} for all γ ∈ Γt(γt)

0 ≤ −γqt(γ) + b(qt(γ))− σ, for all γ ∈ Γt(γt)

Note that differently from Problem P1, in this truncated regulator problem all types are

producing – this explains why the indicator functions do not appear in Problem Pt. Similarly

to Subsection 3.1, if we were to look for a simple cap allocation in this truncated problem,

the optimal one will violate the IR constraint for the highest cost type, in this case the

threshold or upper-bound type, γt.

19We ignore the case where γt = γ, as this implies that almost all types are excluded, a situation that
cannot be optimal under our assumptions.

20Note that when looking within the set of cap allocations, it is sufficient to look for a quantity floor in [q, q].
When checking for optimality more generally, we do not impose that restriction, and hence qt : Γ(γt)→ Q.
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We conjecture however that a cap allocation where type γt is indifferent between produc-

ing or not is optimal. Let qi(γt) be the unique value such that −γtqi(γt) + b(qi(γt)) = σ and

qi(γt) > qf (γt). Thus, qi(γt) is the output level that exceeds γt’s monopoly level and ensures

that this type is indifferent between producing at that level or not. In other words, it corre-

sponds to a price that equals the average cost for type γt. Note that under our assumptions,

such qi(γt) ∈ Q exists.

We define γH(γt) ∈ [γ, γt] to be the value such that qi(γt) ≤ qf (γ) for γ < γH(γt), and

qi(γt) ≥ qf (γ) for γ > γH(γt). Note that γH(γt) = γc(qi(γt)) and that γH(γt) < γt given

γt > γ.

With these objects, we can define the truncated cap allocation, q?t (γ|γt):

q?t (γ|γt) =

qf (γ) γ ∈ [γ, γH(γt))

qi(γt) γ ∈ [γH(γt), γt]
(3)

This allocation q?t (γ|γt) is continuous in γ and may feature full pooling of types if γH(γt) = γ.

Note that if γH(γt) is interior to the interval Γt(γt), then qi(γt) coincides with the flexible

quantity chosen by type γH(γt). Figure 3 displays the two possible cases for q?t for two

different values of γt. Panel (a) shows the case with partial pooling. Panel (b) shows the

cases where γt is sufficiently small that full pooling of all types at the cap results.

γ

q
qf (γ)

γH γtγ γ

qi(γt)

(a) Partial pooling

q?t (γ, γt)

γ

q

qf (γ)

γtγ, γH γ

(b) Full pooling

qi(γt)
q?t (γ, γt)

Figure 3: The truncated cap allocation, q?t (γ|γt).

We would like to find conditions under which q?t (γ|γt) is the optimal solution to the

regulator’s truncated problem. To present our next result, we require a couple of definitions.
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Let

G(γ|γt) ≡ −κF (γt) + κ

[
γ − b′(qi(γt))
γ − γH(γt)

]
F (γ) +

1

γ − γH(γt)

∫ γ

γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃, (4)

for γ > γH(γt) and where, following Amador and Bagwell (2013), κ is a relative concavity

parameter defined as

κ ≡ min
q∈Q

{
1 +

v′′(q)

αb′′(q)

}
.

We let G(γH(γt)|γt) ≡ limγ↓γH(γt) G(γ|γt), which exists and is a finite number.

We may now state our general sufficiency result as follows:

Proposition 1. (Sufficient Conditions) If

(i) G(γ|γt) ≤ G(γt|γt) for all γ ∈ [γH(γt), γt], where G as given by (4); and

(ii) M1(γ) ≡ κF (γ) + wq(γ, qf (γ))f(γ) is non-decreasing in γ for γ ∈ [γ, γH(γt)),

then the cap allocation q?t (γ|γt) solves the regulator’s truncated problem, Problem Pt.

Proof. In the appendix.

Our proof approach follows a guess-and-verify structure. To begin, we follow standard

methods and re-write the incentive constraint in the regulator’s truncated problem as an inte-

gral equation and a monotonicity requirement (namely, that qt(γ) must be non-increasing).21

Next, we embed the monotonicity requirement into the choice set, and we express the inte-

gral equation equivalently in terms of two inequality conditions. The regulator’s truncated

problem is thereby represented as a maximization problem over functions belonging to a

choice set of non-decreasing functions that satisfy three inequality constraints, where one of

the constraints is the IR constraint. With the problem set up in this fashion, we conjecture

that the cap allocation q?t (γ|γt) is the solution. To confirm this conjecture, we construct

multiplier functions for each of the three inequality constraints. Under the conditions stated

in Proposition 1 and for the constructed multiplier functions, we find that the multiplier

functions are non-decreasing, the corresponding Lagrangian is concave, and the cap alloca-

tion satisfies first-order conditions and a complementary slackness condition. Building on

work by Amador and Bagwell (2013), we conclude the proof by showing that these findings

are sufficient to conclude that q?t (γ|γt) solves the regulator’s truncated problem.22

21We emphasize that feasible allocations may be discontinuous. As illustrated in the intuition developed
just below, our proof approach thus must establish that the cap allocation q?t (γ|γt) is optimal among a set
of monotone and possibly discontinuous functions.

22It is instructive here to compare our regulator’s truncated problem, in which transfers are unavailable,
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4.2 Intuition

We now develop some intuition for the interpretation of Proposition 1. We begin with part

(ii). Observe that part (ii) is more easily satisfied when κ is big. Referring to the definition

of κ, we thus conclude that part (ii) is more easily satisfied when the minimum value for

1 + v′′(q)
αb′′(q)

is big. Additionally, since wq(γ, qf (γ)) > 0, we see that part (ii) is also more easily

satisfied when the density is non-decreasing for γ ∈ [γ, γH(γt)).

To see why the relative magnitudes of 1
α
v′′(q) and b′′(q) and the slope of the density mat-

ters, we consider alternatives to the truncated cap allocation. If the truncated cap allocation

is to be optimal among all feasible allocations for the regulator’s truncated problem, then in

particular it must be preferred by the regulator to alternative feasible allocations that are

generated by “drilling holes” in the flexible part of the allocation. Figure 4 illustrates one

such alternative allocation, in which output levels between q1 ≡ qf (γ1) and q2 ≡ qf (γ2) are

prohibited and where γ < γ1 < γ2 < γH . There then exists a unique type γ̃ ∈ (γ1, γ2) that

is indifferent between q1 and q2. The alternative allocation thus induces a “step” at γ̃, with

the allocation q1 selected by γ ∈ [γ1, γ̃) and the allocation q2 selected by γ ∈ [γ̃, γ2], where

for simplicity we place type γ̃ with the higher types.

In comparison to the truncated cap allocation, the alternative allocation has advantages

and disadvantages. First, the alternative allocation generates output choices for γ ∈ [γ1, γ̃)

that are closer to the the regulator’s ideal choices for such types; however, the alternative

allocation also results in output choices for γ ∈ [γ̃, γ2] that are further from the regulator’s

ideal choices for such types. In line with our discussion above, these observations suggest

that a non-decreasing density should work in favor of the truncated cap allocation, since

the disadvantageous features of the alternative allocation then receive greater probability

weight in the regulator’s expected welfare. Second, the alternative allocation increases the

variance of the induced allocation around qf (γ) over the interval [γ1, γ2]. Consistent with

our preceding discussion, this effect brings into consideration the relative magnitudes of
1
α
v′′(q) and b′′(q), where the latter determines the slope of qf (γ). In particular, if v(q) is

concave, then the variance effect should work in favor of the truncated cap allocation, since

the regulator would then not welcome an increase in variance. If instead v(q) is convex, then

with the standard (Baron-Myerson) framework in which transfers are available. In the solution approach for
the standard framework, the integral equation is substituted into the objective, the IR constraint is shown
to bind for the highest type, the IR constraint for the highest type is substituted into the objective, and the
resulting objective is then maximized point-wise. If the solution satisfies the monotonicity constraint, then
the problem is solved. By contrast, in our no-transfers setting, we cannot substitute the integral equation into
the objective, since we do not have a remaining transfer instrument with which to ensure that the solution of
the resulting optimization problem satisfies the integral equation. For the same reason, we cannot substitute
the IR constraint for the highest type into the objective. Indeed, as a general matter, when transfers are
unavailable it is no longer obvious that the IR constraint for the highest type must bind.
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Figure 4: Drilling a hole (with σ > 0).

the regulator would benefit from the greater variance afforded by the alternative allocation,

with the benefit to the regulator being larger when α is smaller. Based on this perspective,

we may understand that the truncated allocation could remain optimal when v(q) is convex,

provided that the density rises fast enough, α is sufficiently large and/or b′′(q) is large in

absolute value (so that qf (γ) is flat, in which case steps add little variation).

The intuitive discussion presented here considers only a subset of feasible alternative

allocations that introduce variations in the flexible region. In our no-transfer setting, the

incentive compatibility constraint implies that an allocation must be given by the flexible

allocation over any interval for which the allocation is continuous and strictly decreasing;

however, an incentive compatible allocation may include many points of discontinuity (steps),

where any such point hurdles the flexible allocation as illustrated in Figure 4.23 Our dis-

cussion above considers only an alternative allocation with a single step, but this discussion

provides an intuitive foundation for understanding more generally the key forces at play.

We turn now to consider the intuition associated with part (i) of Proposition 1. For type

γt, the IR constraint holds with equality at the output choices qi(γt) and q′, where q′ < qf (γt)

is defined so that type γt is indifferent between qi(γt) and q′; thus, the IR constraint for type

γt is satisfied provided that the allocation for this type resides in the interval [q′, qi(γt)].

As a general matter, it is not obvious that the IR constraint must bind for type γt in our

no-transfer setting, since the allocation for this type may be positioned so as to favorably

23For further discussion, see Melumad and Shibano (1991).

23



affect allocations for lower types. Part (i) of Proposition 1 provides conditions under which

the solution to the regulator’s truncated problem is such that type γt selects qi(γt) and has

a binding IR constraint.

At a more formal level, we show in the proof that the value of the multiplier function for

the IR constraint of type γt in fact equals G(γt|γt). Since the constructed multiplier functions

must be non-negative, we thereby confirm that G(γt|γt) ≥ 0, with the corresponding inter-

pretation that the shadow price of relaxing the IR constraint for type γt is non-negative. Part

(i) of Proposition 1 goes further and requires that G(γ|γt) ≤ G(γt|γt) for all γ ∈ [γH(γt), γt].

As confirmed in the proof, this condition ensures that the regulator cannot improve on the

cap allocation q?t (γ|γt) by altering the allocation for types γ ∈ [γH(γt), γt] while respecting

the monotonicity requirement.

5 Global Optimality

The results of the previous section offer a characterization of the optimal solution given an

exogenous amount of exclusion as defined by the fixed threshold or upper-bound type, γt. In

particular, for every exclusion threshold γt, we have found sufficient conditions for the associ-

ated truncated cap allocation q?t , defined in (3), to be optimal when restricting attention only

to those types not excluded from production. However, it is straightforward to argue now

that, given an amount of exclusion, the truncated cap allocation is optimal when attention

is widened to include all types. Note that the only potential issue is incentive compatibility.

The q?t allocation when extended for all types must remain incentive compatible. But this

is straightforward: since type γt is indifferent between producing or not, all types above γt

strictly prefer not to produce, as they face a higher marginal cost.

We have the following result:

Proposition 2. Assume that parts (i) and (ii) of Proposition 1 hold for all γt ∈ (γ, γ]. Then

the cap allocation with exclusion q? defined in (2) solves the regulator problem, Problem P1.

Proof. We know from Lemma 1 that any level of exclusion is given by a threshold γt ∈ (γ, γ].

Given any level of exclusion γt, the allocation q?(γ|γt) defined in equation (3) remains a

feasible allocation when the allocation is extended to entire type space by assigning no

production to types strictly above γt. This follows because type γt is indifferent between

producing or not in the q?(γ|γt) allocation, and thus, all types higher than γt strictly prefer

not to produce, as prescribed by the allocation.

Thus, for a given level of exclusion, γt, Proposition 1 guarantees that the allocation

q?(γ|γt) extended over the entire type space is optimal within all feasible allocations that
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deliver the same level of exclusion.

Note that the allocation q?(γ) is the optimal among all the q?(γ|γt) allocations for all

γt ∈ (γ, γ]. We can ignore any allocation where γt = γ (that is, full exclusion) as such an

allocation is dominated by the fully flexible allocation. As a result q?(γ) is optimal among

the set of all feasible allocations.

The following corollary provides easier-to-check conditions for Proposition 1 and 2

Corollary 1. Suppose that κ ≥ 1/2. For given γt, if f(γ) is non-decreasing for all γ ∈ [γ, γt],

then conditions (i) and (ii) of Proposition 1 hold. If f(γ) is non-decreasing for all γ ∈ [γ, γ],

then the cap allocation with exclusion q? is optimal within the set of all feasible allocations.

Proof. In the appendix.

5.1 A Demand Family

In the Appendix proof of Corollary 1, we show that if the following M2(γ) function,

M2(γ) ≡ κF (γ) +
1

α
v′(qi(γt))f(γ) + (κ− 1)(γ − b′(qi(γt)))f(γ),

is non-decreasing in [γH(γt), γt], then part (i) of Proposition 1 holds. We now show that

for a demand family (that includes several commonly used examples as we show below),

M1(γ) = M2(γ); and thus, if part (ii) of Proposition 1 holds globally for all γ ∈ [γ, γ], then

part (i) holds as well.

Toward this end, we consider a family of demand functions such that

P ′(q)

P (q)
q = a0 +

b0

P (q)
for all q ∈ (0, qmax] (5)

with a0 6= −1. We have the following result:

Lemma 4. Suppose that (5) holds. Then

(a) v(q) = − a0
1+a0

b(q)− b0
1+a0

q for all q ∈ Q,

(b) κ = 1 + 1
α
v′′(q)
b′′(q)

= 1− 1
α

a0
1+a0

,

(c) M1(γ) = M2(γ) for all γ ∈ [γ, γ].

25



Proof. For parts (a) and (b), recall that v′(q) = −P ′(q)q and that b′(q) = P (q) + qP ′(q).

Using equation (5), it follows that, for all q ∈ (0, qmax],

−v′(q) = a0(b′(q) + v′(q)) + b0

v′(q) = − a0

1 + a0

b′(q)− b0

1 + a0

(6)

Integrating the above in [q0, q] where q > q0 > 0, we have that

v(q) +
a0

1 + a0

b(q) +
b0

1 + a0

q = v(q0) +
a0

1 + a0

b(q0) +
b0

1 + a0

q0

From Assumption 1, using the limit condition limq0↓0 v(q0) = limq0↓0 b(q0) = 0, we get part

(a) for all q ∈ Q.

Differentiating (6), we get that 1
α
v′′(q)
b′′(q)

= − 1
α

a0
1+a0

, and thus part (b) follows.

To show part (c), note that

wq(γ, qf (γ)) =
1

α
v′(qf (γ))

= − 1

α

a0

1 + a0

b′(qf (γ))− 1

α

b0

1 + a0

= − 1

α

a0

1 + a0︸ ︷︷ ︸
κ−1

(b′(qf (γ))︸ ︷︷ ︸
γ

−b′(qi))−
1

α

[ a0

1 + a0

b′(qi)−
b0

1 + a0︸ ︷︷ ︸
−v′(qi)

]

= (κ− 1)(γ − b′(qi)) +
1

α
v′(qi)

It follows then that

M1(γ) = κF (γ) +wq(γ, qf (γ))f(γ) = κF (γ) + (κ− 1)(γ− b′(qi))f(γ) +
1

α
v′(qi)f(γ) = M2(γ)

which with qi = qi(γt) delivers part (c).

For the demand family stated in equation (5), we can obtain a general sufficient condition

for the results in Propositions 1 and 2 to hold.

Corollary 2. Suppose that P satisfies (5) for a0 6= −1. If

(2κ− 1)f(γ) +
1

α
v′(qf (γ))f ′(γ) ≥ 0 (7)

holds for all γ ∈ [γ, γ], then conditions (i) and (ii) of Propositions 1 and 2 hold.

Proof. Under this family, we already know that if part (ii) of Proposition 1 holds globally,
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then so does part (i). Taking a derivative of M1(γ) with respect to γ, and using that

wq(γ, qf (γ)) = 1
α
v′(qf (γ)) together with

dv′(qf (γ))

dγ
=
v′′(qf (γ))

b′′(qf (γ))

delivers the result.

This demand family incorporates several common examples as special cases:

Linear demand. Consider P (q) = µ−βq with µ > γ, β > 0 and Q = [0, µ/β−ε] for ε > 0

small. For this example, qf (γ) = (µ − γ)/(2β), v(q) = βq2/2 and κ = 1 − 1
2α

. Assumption

1 is satisfied for ε > 0 sufficiently small if α ∈ [µ/(µ + γ), 1] where 1 > µ/(µ + γ) > 1/2

follows from µ > γ > 0. Assumption 2 is satisfied if qf (γ) >
√
σ/β. This demand satisfies

condition (5) with a0 = 1 and b0 = −µ. Condition (7) is satisfied in this example if

f ′(γ)

f(γ)
≥ 2(1− α)

µ− γ

for all γ ∈ [γ, γ].

Constant elasticity demand. Consider P (q) = q−
1
η with η > 1, and let Q = [0, qmax]

where qmax > 0. For this example, qf (γ) =
(

γη
η−1

)−η
, v(q) = 1

η−1
q
η−1
η and κ = 1 + 1

α
1

η−1
.

Assumption 1 is satisfied if qmax
− 1
η <

γ

1− 1
η

(1− 1
α

)
where 0 <

γ

1− 1
η

(1− 1
α

)
≤ γ follows from

α ∈ (0, 1] and γ > 0. Assumption 2 is satisfied if
(

γη
η−1

)1−η
1
η
> σ. This demand satisfies

condition (5) with a0 = − 1
η

and b0 = 0. Condition (7) is satisfied in this example if

f ′(γ)

f(γ)
≥ −α(η − 1) + 2

γ

for all γ ∈ [γ, γ].

Logarithmic demand. Consider P (q) = µ − β ln q with β > 0 and Q = [0, eµ/β − ε]

for ε > 0 small. For this example, qf (γ) = e
µ−β−γ

β , v(q) = βq and κ = 1. Assumption

1 is satisfied for ε > 0 sufficiently small if β(1 − α)/α < γ. Assumption 2 is satisfied if

βe
µ−β−γ

β > σ. This demand satisfies condition (5) with a0 = 0 and b0 = −β. Condition (7)

is satisfied in this example if
f ′(γ)

f(γ)
≥ −α

β
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for all γ ∈ [γ, γ].

Of course, the demand family defined by (5) includes examples beyond the three examples

highlighted here.24 The three examples, however, are commonly used in the literature and

illustrate the breadth of the demand family defined by (5).

The sufficient conditions derived for the three examples admit an interpretation that is

in line with the intuition developed previously whereby a rising density f(γ) and a concave

v(q) work in favor of the optimality of the cap allocation. For the constant elasticity and

log demand examples, v(q) is concave and linear, respectively, and the sufficient conditions

hold when f(γ) is non-decreasing; indeed, for these examples, the sufficient conditions are

satisfied even when f(γ) is decreasing, provided that it does not fall too quickly. By contrast,

for the linear demand example, v(q) is convex, which works against the optimality of the

cap allocation. The sufficient condition for this example thus places a more demanding

restriction on the density: the condition fails if f(γ) is anywhere decreasing, and it requires

that f(γ) is increasing (non-decreasing) when α < 1 (α = 1).

Interestingly, the demand family we have identified corresponds to the “linear delegation”

case studied in Kolotilin and Zapechelnyuk (2019) for the regulation problem when σ = 0.25

However, we are not restricted to demand functions within the family that satisfies condition

(5). For other demand functions, we could use parts (i) and (ii) of Propositions 1 and 2

directly. Alternatively, Corollary 1 also allows us to find simple conditions. Consider the

following example, which does not fit in the family specified by (5):

Exponential demand. Consider P (q) = βe−q with β > max{γ, γe2} with Q = [0, 2 − ε]
for ε > 0 small. For this example, the sign of v′′(q) varies over Q. We find that v′′(q) =

βe−q(1 − q) and κ = 1 − 1
2α

. Assumption 1 is satisfied for ε > 0 sufficiently small if

α > 2/(1 + γ) where this inequality when combined with α ∈ (0, 1] implies that γ > 1.

24For example, the demand function P (q) = µ− βqη satisfies (5) with a0 = η and b0 = −µη.
25Kolotilin and Zapechelnyuk (2019) consider “linear delegation” problems where the principal’s objective,

V (γ, q), satisfies Vq(γ, q) = −γ−c(q) and where the agent’s objective, U(γ, q), satisfies Uq(γ, q) = d(γ)−c(q)
where c and d are continuous functions and c is strictly increasing. This implies that Vq(γ, q) − Uq(γ, q) =
γ − d(γ). That is, Vq(γ, q) − Uq(γ, q) is independent of q. In our case, for σ = 0, Vq(γ, q) = wq(γ, q) =
−γ + b′(q) + 1

αv
′(q). Given that the objective of the agent can be modified by any strictly increasing affine

transformation, we have that in our case, Uq(γ, q) = A(−γ+b′(q)) for any A > 0. Hence, “linear delegation”
requires that there exists A > 0 such that Vq(γ, q)−Uq(γ, q) is independent of q, or alternatively, that there
exists A > 0 and B such that

b′(q) +
1

α
v′(q)−Ab′(q) = B.

Using that b′(q) = P ′(q)q+ P (q) and that v′(q) = −qP ′(q), the above delivers condition (5). Note also that
demand functions within this family deliver payoff functions w(γ, q) and b(q) that belong to the restricted
preference family previously identified by Amador and Bagwell (2013) in their Proposition 2.

28



Assumption 2 is satisfied when maxq∈Q(βe−q − γ)q > σ. Corollary 1 holds if α = 1 and f if

non-decreasing for all γ ∈ [γ, γ].

At this point, it is convenient to pause and consider the “no-exclusion” scenario mentioned

in the Introduction, wherein the regulator must ensure that all types choose to produce so

that exclusion never occurs. This scenario can be motivated with reference to market settings

where the monopolist provides an essential service with poor substitution alternatives. To

characterize the optimal regulatory policy for the no-exclusion scenario, we may refer to the

truncated cap allocation q?t (γ|γt), defined in (3), for the special case where γt = γ. This

allocation corresponds to a price-cap regulatory policy, where the price cap is set at the

second-best level that leaves a monopolist with the highest possible cost, γ, with zero profit

(inclusive of the fixed cost, σ). To establish conditions for the optimality of this policy for

the no-exclusion scenario, we simply set γt = γ and refer to Proposition 1, Corollaries 1 and

2, and the demand examples above. Thus, for example, this price-cap allocation is optimal

for the no-exclusion scenario if the demand function takes a linear, constant elasticity or log

form and if a simple inequality condition holds, respectively, where the inequality condition

is sure to hold if the density is non-decreasing over the full support.

By contrast, a characterization of optimal regulation for the general scenario in which

exclusion is allowed must also determine the optimal value for γt. In other words, the

optimal regulatory policy for the general scenario must determine as well the degree (if any)

of exclusion. As mentioned in the Introduction, this scenario can be motivated with reference

to market settings in which the monopolist provides an inessential service for a given market

or region. We develop our results for the optimal degree of exclusion in the next section.

6 When to Exclude?

In the previous section, we obtain conditions that guarantee that the cap allocation with

exclusion, q? defined in (2), is optimal within the set of all feasible allocations. In this section,

we study the properties of this optimal cap allocation, q?, and in particular, whether or not

some types are excluded from production.

Given a level of exclusion, parameterized by γt, we can write the welfare function as:

W (γt) =

∫ γH(qi(γt))

γ

(w(γ, qf (γ))− σ)dF (γ) +

∫ γt

γH(qi(γt))

(w(γ, qi(γt))− σ)dF (γ)

where as before qi(γt) represents the quantity strictly above qf (γt) that makes type γt indif-

ferent between producing or not.
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Taking the derivative of the welfare function with respect to γt, we obtain that26

W ′(γt) = (w(γt, qi(γt))− σ)f(γt) +

∫ γt

γH(qi(γt))

wq(γ, qi(γt))q
′
i(γt)dF (γ)

Given that qi(γt) satisfies

γt = P (qi(γt))−
σ

qi(γt)
,

it follows that

q′i(γt) =
1

P ′(qi(γt)) + σ/(qi(γt))2

We have the following result:

Lemma 5. The quantity of the indifferent type, qi(γt), is such that q′i(γt) < 0. In addition,

γt > γH(qi(γt)) for all γt > γ.

Proof. Given that qi(γt) > qf (γt), it follows that πq(γt, qi(γt)) < 0. Hence, πq(γt, qi(γt)) =

P ′(qi(γt))qi(γt) + π(γt, qi(γt))/qi(γt) < 0. Using that π(γt, qi(γt)) = σ, we obtain the first

result of the lemma.

For the second result, there are two cases to consider, one where γH(γt) > γ and the

other where γH(γt) = γ. For the latter case, the result is immediate. For the former case,

we have that γH(γt) = b′(qf (γH(γt))) = b′(qi(γt)) = P ′(qi(γt))qi(γt) + P (qi(γt)). Thus,

γt − γH(γt)) = −
(

σ

qi(γt)
+ P ′(qi(γt))qi(γt)

)
The first result of the lemma establishes that the bracketed expression is negative; thus, it

follows that γt > γH(γt).

We can use the definition of w, together with the definitions of γt and γH(γt), to obtain

that

W ′(γt) =
1

α
v(qi(γt))f(γt)− qi(γt)

(
1

α
v′(qi(γt))

)
F (γt)− F (γH(γt))

γt − b′(qi(γt))

+
qi(γt)

γt − b′(qi(γt))

∫ γt

γH(γt)

(γ − b′(qi(γt)))dF (γ)

for all γt ∈ (γ, γ].

26 The function γH(γt) may fail to be differentiable at the highest value for γt at which γH(γt) = γ;
however, the differentiability of γH does not affect the differentiability of the objective. An argument similar
to the one use in the proof of Lemma 2 can be used to show differentiability of the objective.
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We know that γ > b′(qi(γt)) for all γ > γH(γt). So the last term in the above is strictly

positive. Thus,

W ′(γt) >
1

α
v(qi(γt))f(γt)− qi(γt)

(
1

α
v′(qi(γt))

)
F (γt)− F (γH(γt))

γt − b′(qi(γt))

=
1

α
v(qi(γt))

[
f(γt)−

F (γt)− F (γH(γt))

γt − b′(qi(γt))

]
+

1

α

[
v(qi(γt))− v′(qi(γt))qi(γt)

]F (γt)− F (γH(γt))

γt − b′(qi(γt))
.

If f(γ) is non-decreasing for all γ, we have that f(γt)− F (γt)−F (γH(γt))
γt−γH(γt))

=

∫ γt
γH (γt)

[
f(γt)−f(γ)

]
dγ

γt−γH(γt)
≥

0. Given that b′(qi(γt)) ≤ γH(γt) < γt, it follows that f(γt) − F (γt)−F (γH(γt))
γt−b′(qi(γt))) ≥ 0. If v(q) is

weakly concave, then v(q)− v′(q)q ≥ 0 as v(0) = 0. Hence:

Proposition 3 (No exclusion). If f(γ) is non-decreasing for all γ ∈ [γ, γ] and v(q) is weakly

concave for all q ∈ Q, then W ′(γt) > 0 for all γt ∈ (γ, γ]. If the assumption of Proposition

2 holds, then, γt = γ is optimal.

Proof. The proof is given in the text.

Proposition 3 delivers a general set of conditions under which there is no exclusion. The

log demand and constant elasticity demand examples satisfy the requirement that v is weakly

concave. In addition, if f is non-decreasing, then we may refer to Corollary 2 to conclude

that the assumption of Proposition 2 holds in both examples; thus, the optimal allocation is

the cap allocation without exclusion.

For the linear demand example, however, v is strictly convex, and Proposition 3 thus

does not apply. For this example, in the case of a uniform distribution with α = 1, we have

a very different result:

Proposition 4 (Exclusion). Consider the linear demand example, suppose that F is uniform

and α = 1. If σ > 0, then

(a) In any optimal allocation, γt is such that γH(γt) = γ.

(b) If qi(γ) < qf (γ), then in any optimal allocation γt < γ and qi(γt) = q? where q? is a

solution of
(µ− γ)(µ− γ − 2βq?)(q?)2

σ − β(q?)2
= σ.

Proof. First, note that q′i(γt) < 0 implies that γH(γt) is strictly increasing in γt, as long as

γH(γt) > γ. That is, there exists a γ̂ ∈ (γ, γ] such that γH(γt) = γ for all γt ≤ γ̂ and
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γH(γt) > γ for all γt > γ̂. It is possible that γ̂ = γ, and thus for any level of exclusion, all

types are pooled.

Consider a situation where γ̂ < γ. Then, for γt ∈ (γ̂, γ], using the functional forms,

α = 1, the uniform distribution assumption, and that b′(qi(γt)) = γH(γt), we have that

W ′(γt)/fU = v(qi(γt))− v′(qi(γt))qi(γt) +
qi(γt)

γt − γH(γt)

∫ γt

γH(γt)

(γ − γH(γt))dγ

= −βqi(γt)2/2− qi(γt)γH(γt) +
qi(γt)

2(γt − γH(γt))

(
γ2
t − γH(γt)

2)

=
qi(γt)

2
[−βqi(γt) + γt − γH(γt)]

where fU = 1
γ−γ denotes the uniform density.

Using that γt − γH(γt) = − σ
qi(γt)

+ βqi(γt), we obtain that

W ′(γt)/fU = −1

2
σ < 0.

Thus, for all γt ∈ (γ̂, γ], W ′(γt) < 0, and thus, in an optimal allocation γt ≤ γ̂, guaranteeing

that all types are pooled. This completes the proof of part (a).

For part (b), note that the conditions imply that γ̂ < γ. To see this, note that if γt = γ,

then qi(γt) = qi(γ) < qf (γ) under the conditions in part (b). There then exists γ0 > γ such

that qf (γ0) = qi(γt), from which it follows that γH(γt) = γ0 > γ, a contradiction to part (a).

Given that γt ≤ γ̂ < γ, part (a) implies that some types will be excluded.

For the case where γt < γ̂, then γH(γt) = γ, and

W ′(γt)/fU = −1

2

(
σ −

(µ− γ)(µ− γ − 2βqi(γt))(qi(γt))
2

σ − β(qi(γt))2

)
.

Note that

lim
γt→γ

W ′(γt)/fU = −1

2

(
σ −

(µ− γ)(µ− γ − 2βqi(γ))(qi(γ))2

σ − β(qi(γ))2

)
.

By definition of qi, we have that (µ− βqi(γ)− γ)qi(γ) = σ. Using this, we get

(µ− γ − 2βqi(γ))qi(γ) = σ − β(qi(γ))2
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and thus

lim
γt→γ

W ′(γt)/fU = −1

2

(
σ −

(µ− γ)(µ− γ − 2βqi(γ))(qi(γ))2

σ − β(qi(γ))2

)
= −1

2

(
σ − (µ− γ)qi(γ)

)
= −1

2

(
(µ− βqi(γ)− γ)qi(γ)− (µ− γ)qi(γ)

)
=

1

2
βqi(γ)2 > 0.

We have already shown that W ′(γ) < 0 for γ ∈ (γ̂, γ]. Together with the above limiting

result, and that W ′ is continuous at γ̂ (see footnote 26), it follows that the optimal γt is

interior in [γ, γ̂] and thus satisfies W ′(γt) = 0.

This proposition contains two results. The first is that in the linear demand example

with a uniform distribution and α = 1, it is always optimal to pool all types at the cap (part

(a)). Part (b) argues that if not all types pool at the cap when an allocation features no

exclusion, that is, when γt = γ, then some higher-cost types will necessary be excluded in

any optimal allocation.27

The above result demonstrates that no-exclusion result of Proposition 3 is not a general

property. Because of its tractability, the linear demand example with a uniform distribution

and α = 1 is often used in the literature. For this case, we have shown that a cap allocation

is optimal but that such an allocation also features the exclusion of higher-cost types.

7 Conclusion

We analyze the Baron and Myerson (1982) model of regulation under the restriction that

transfers are infeasible. To do this, we extend the Lagrangian approach to delegation prob-

lems of Amador and Bagwell (2013) to include an ex post participation constraint that allows

for the possible exclusion of some types. We report sufficient conditions under which optimal

regulation takes the simple and common form of price-cap regulation. We identify families of

demand and distribution functions and welfare weights that satisfy our sufficient conditions.

We also report conditions under which the optimal price cap is set at a level such that no

types are excluded. Using a linear demand example, we show that exclusion of higher-cost

types can be optimal when these conditions fail to hold. Our analysis also can be used to

provide conditions for the optimality of price-cap regulation when an ex post participation

constraint is present and exclusion is infeasible.

27 The proposition only characterizes the solution for σ > 0. When σ = 0, if qi(γ) < qf (γ), we can show
that any γt such that qi(γt) ≤ qf (γ) is optimal. Thus, the regulator is indifferent between some exclusion or
none.
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Our analysis points to several directions for future research. We mention four possibilities

here.

First, we have provided general sufficient conditions so that a cap allocation with possible

exclusion is optimal. These sufficient conditions guarantee that the Lagrangian approach

can be used to show that a price cap is optimal for any given level of exclusion. Thus, the

sufficient conditions may be stronger than necessary since the price-cap structure is required

to be optimal even for exclusion levels that are sub-optimal. It should be possible to relax

these conditions by using the Lagrangian approach only at the optimal level of exclusion.28

Second, when our sufficient conditions fail, it may be that the optimal allocation is not

a price cap with possible exclusion. In that case, the Lagrangian approach requires us

to identify the alternative solution candidate. It should be possible as well to construct

Lagrange multipliers and generate sufficient conditions for such a case.

Third, we focus on a single-product monopolist and leave for future research the multi-

product expression of our findings. More generally, the characterization of optimal delegation

contracts in multi-dimensional settings is a challenging and important avenue for future

work.29

Finally, our analysis extends the optimal delegation literature to include an ex-post par-

ticipation constraint that allows for possible exclusion within a regulation framework. Many

other applications may arise naturally in other environments, and they may be naturally

captured in versions of the delegation model we have developed here.

28At the same time, a valuable by-product of our approach is that we obtain conditions under which a
price cap is optimal for the no-exclusion scenario.

29 For related work, see Ambrus and Egorov (2017), Amador and Bagwell (2018), Armstrong and Vickers
(2010), Frankel (2014), Frankel (2016) and Koessler and Martimort (2012). The paper by Frankel (2016)
is perhaps of special relevance here. He considers a model with multiple actions and establishes the exact
optimality of a generalized cap rule, but under the assumptions that the loss function is quadratic, the agent
has a constant bias, the ex ante distribution of states is normal iid, and the participation constraint is absent.
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A Proof of Lemma 2

Proof. We start by observing that for any ∆ 6= 0,

W c(x+ ∆)−W c(x)

∆

=

∫ γc(x)

γc(x+∆)

w(γ, x+ ∆)− w(γ, qf (γ))

∆
dF (γ) +

∫ γ

γc(x)

w(γ, x+ ∆)− w(γ, x)

∆
dF (γ) (8)

Then, we consider two different cases.

Case 1. x > qf (γ). Then for all |∆| > 0 small enough, we have that x+ ∆ > qf (γ), and as

a result γc(x+ ∆) = γc(x) = γ, and thus

W c(x+ ∆)−W c(x)

∆
=

∫ γ

γc(x)

w(γ, x+ ∆)− w(γ, x)

∆
dF (γ)

Taking the limit as ∆→ 0, we obtain

dW c(x)

dx
=

∫ γ

γc(x)

wq(γ, x)dF (γ)

Case 2. 0 < qf (γ) < x ≤ qf (γ). Consider a neighborhood Ux around x such that that

0 6∈ cl(Ux). Let Kx = maxy∈cl(Ux) |b′(y) + v′(y)/α|. Assumption 1 guarantees that such Kx

exists and is finite. The mean value theorem guarantees that
∣∣∣ (b(y)+v(y)/α)−(b(x)−v(x)/α)

y−x

∣∣∣ ≤ Kx.

Note that qf (γc(x)) = x, and that for |∆| > 0 small enough, qf (γ) ∈ Ux for γ ∈
[γc(x+ |∆|), γc(x− |∆|)], given that qf and γc are continuous. Then,∫ γc(x)

γc(x+∆)

∣∣∣∣w(γ, x+ ∆)− w(γ, qf (γ))

∆

∣∣∣∣ dF (γ)

=

∫ γc(x)

γc(x+∆)

∣∣∣∣−γ(x+ ∆− qf (γ))

∆
+

(b(x+ ∆) + v(x+ ∆)/α)− (b(qf (γ))− v(qf (γ))/α)

∆

∣∣∣∣ dF (γ)

≤
∫ γc(x)

γc(x+∆)

γ

∣∣∣∣x+ ∆− qf (γ))

∆

∣∣∣∣ dF (γ)+∫ γc(x)

γc(x+∆)

∣∣∣∣(b(x+ ∆) + v(x+ ∆)/α)− (b(qf (γ))− v(qf (γ))/α)

x+ ∆− qf (γ)

×x+ ∆− qf (γ)

∆

∣∣∣∣ dF (γ)
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≤
∫ γc(x)

γc(x+∆)

γ

∣∣∣∣x+ ∆− qf (γ))

∆

∣∣∣∣ dF (γ) +

∫ γc(x)

γc(x+∆)

Kx

∣∣∣∣x+ ∆− qf (γ)

∆

∣∣∣∣ dF (γ)

= (γ +Kx)

∫ γc(x)

γc(x+∆)

∣∣∣∣x+ ∆− qf (γ)

∆

∣∣∣∣ dF (γ)

≤ (γ +Kx)

∫ γc(x)

γc(x+∆)

∣∣∣∣x+ ∆− x
∆

∣∣∣∣ dF (γ) = (γ +Kx)

∫ γc(x)

γc(x+∆)

dF (γ)

The steps above are immediate except for the last inequality. For this we use that if x < qf (γ),

then for all sufficiently small ∆, qf (γc(x + ∆)) = x + ∆. If x = qf (γ), then for ∆ > 0, the

integral range is empty (and thus, the integral equals zero). For ∆ < 0, we still have that

qf (γc(x+ ∆)) = x+ ∆.

Now note that the last integral above tends to zero as ∆ goes to zero. And thus, taking

the limit of (8) as ∆→ 0, we obtain that for x > qf (γ):

dW c(x)

dx
=

∫ γ

γc(x)

wq(γ, x)dF (γ)

Note that

dW c(s)

dx

∣∣∣∣
x=qmax

=

∫ γ

γc(qmax)

wq(γ, qmax)dF (γ) <

∫ γ

γ

wq(γ, qmax)dF (γ) = wq(γ, qmax) < 0

where we use that γc(qmax) = γ as qmax > qf (γ) and that wq(γ, qmax) > wq(γ, qmax) for γ > γ

to show the first inequality. For the last inequality we use Assumption 1.

Note that wq(γ, qf (γ)) > 0, as v′(q) > 0. Consider x0 > qf (γ) such that wq(γ, x0) > 0.

Such an x0 exists by continuity of wq. Note that for all for all q0 ∈ (qf (γ), x0], γc(q0) < γ and

wq(γ, q0) ≥ wq(γ, x0) > 0, by weak concavity of w. It follows that 0 < wq(γ, q0) ≤ wq(γ, q0)

for all γ ∈ [γ, γ]. Hence for all q0 ∈ (qf (γ), x0] we have that

dW c(s)

dx

∣∣∣∣
x=q0

=

∫ γ

γc(q0)

wq(γ, q0)dF (γ) > 0

It follows then that the optimal value of x is interior to (qf (γ), qmax] and must solve the

first order condition in the lemma.

B Proof of Proposition 1

Proof. We proceed as follows. First, we re-state the Regulator’s Truncated problem by ex-

pressing the incentive compatibility constraints in their standard form as an integral equation
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and a monotonicity requirement:30

max
qt:Γt(γt)→Q

∫
Γt(γt)

(w(γ, qt(γ))− σ) dF (γ) subject to:

− γqt(γ) + b(qt(γ))− σ −
∫ γt

γ

qt(γ̃)dγ̃ = U, for all γ ∈ Γt(γt)

qt(γ) non-increasing, for all γ ∈ Γt(γt)

0 ≤ −γqt(γ) + b(qt(γ))− σ, for all γ ∈ Γt(γt)

where U ≡ −γtqt(γt) + b(qt(γt))− σ is the profit enjoyed by the monopolist with the highest

possible cost type in Γt(γt).

Next, we follow Amador and Bagwell (2013) and re-write the incentive constraints as

a set of two inequalities and embed the monotonicity constraint in the choice set of qt(γ).

With the choice set for qt(γ) defined as Φ ≡ {qt|qt : Γt(γt)→ Q; and qt non-increasing}, the

regulator’s truncated problem may now be stated in final form as follows:

max
qt∈Φ

∫
Γt(γt)

(w(γ, qt(γ))− σ) dF (γ) subject to: (P ′t)

γqt(γ)− b(qt(γ)) + σ +

∫ γt

γ

qt(γ̃)dγ̃ + U ≤ 0, for all γ ∈ Γt(γt) (9)

−γqt(γ) + b(qt(γ))− σ −
∫ γt

γ

qt(γ̃)dγ̃ − U ≤ 0, for all γ ∈ Γt(γt) (10)

γqt(γ)− b(qt(γ)) + σ ≤ 0, for all γ ∈ Γt(γt) (11)

Let Λ1(γ) and Λ2(γ) denote the (cumulative) multiplier functions associated with the two

inequalities that define the incentive compatibility constraints in the final form of the reg-

ulator’s truncated problem. The multiplier functions Λ1(γ) and Λ2(γ) are restricted to be

non-decreasing in Γt(γt). Letting Λ(γ) ≡ Λ1(γ)−Λ2(γ), we can write the Lagrangian of the

regulator’s truncated problem as stated in P ′t as follows:

L =

∫
Γt

w(γ, qt(γ))dF (γ)−
∫

Γt

(∫ γt

γ

qt(γ̃)dγ̃ + U + γqt(γ)− b(qt(γ)) + σ

)
dΛ(γ)

+

∫
Γt

(
− γqt(γ) + b(qt(γ))− σ

)
dΨ(γ),

where without loss of generality we have removed the constant σ in the first integral and

where to save notation we have removed the dependence of Γt on γt. Notice that Ψ(γ) is

30See, for example, Milgrom and Segal (2002).
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the multiplier for the ex post participation constraints. Ψ(γ) is also restricted to be non-

decreasing.

We propose the following multipliers:

Λ(γ) =


0 ; γ = γ

wq(γ, qf (γ))f(γ) ; γ ∈ (γ, γH(γt))

A+ κ(F (γt)− F (γ)) ; γ ∈ [γH(γt), γt]

and

Ψ(γ) =

0 ; γ ∈ [γ, γt)

A ; γ = γt

where

A =
1

γt − γH(γt)

[∫ γt

γH(γt)

wq(γ, qi(γt))f(γ)dγ + κ (γH(γt)− b′(qi(γt)))F (γt)

]
. (12)

Note that while defining Λ(γ), we allow for the possibility that γH(γt) = γ, and the

intermediate case in the definition then does not apply. This is the case where there is full

pooling of all types.

We show below that the hypothesis of Proposition 1 guarantees that R(γ) ≡ κF (γ)+Λ(γ)

is non-decreasing; thus, we may write Λ(γ) as the difference between two non-decreasing

functions, Λ1(γ) = R(γ) and Λ2(γ) = κF (γ).31 We also require that A ≥ 0 as Φ must be

non-decreasing. We establish this inequality below.

We note that the cap allocation q?t (γ|γt) together with the proposed multipliers satisfy

complementary slackness. The incentive compatibility constraints bind under the cap allo-

cation, and Ψ(γ) is constructed to be zero whenever the participation constraint holds with

slack.

When these multipliers are used, the Lagrangian becomes

L =

∫
Γt

w(γ, qt(γ))dF (γ)−
∫

Γt

(∫ γt

γ

qt(γ̃)dγ̃ + U + γqt(γ)− b(qt(γ)) + σ

)
dΛ(γ)

+
(
− γtqt(γt) + b(qt(γt))− σ

)
A

Recalling the definition of U and using Λ(γ) = 0 and Λ(γt) = A, we can then write the

31For our analysis, only the difference between Λ1(γ) and Λ2(γ) matters, and so we need only show that
there exists two non-decreasing functions, Λ1(γ) and Λ2(γ), whose difference delivers Λ(γ).
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Lagrangian as

L =

∫
Γt

w(γ, qt(γ))dF (γ)−
∫

Γt

(∫ γt

γ

qt(γ̃)dγ̃ + γqt(γ)− b(qt(γ)) + σ

)
dΛ(γ)

Integrating the Lagrangian by parts we get32

L =

∫
Γt

(
w(γ, qt(γ))f(γ)− Λ(γ)qt(γ)

)
dγ +

∫
Γt

(
− γqt(γ) + b(qt(γ))− σ

)
dΛ(γ) (13)

Let us now consider the concavity of the Lagrangian. Using (13), we may re-write the

Lagrangian as

L =

∫
Γt

(
w(γ, qt(γ))− κ(−γqt(γ) + b(qt(γ))− σ)

)
f(γ)dγ −

∫
Γt

Λ(γ)qt(γ)dγ

+

∫
Γt

(
− γqt(γ) + b(qt(γ))− σ

)
d(κF (γ) + Λ(γ))

From the definition of κ, w(γ, qt(γ))− κb(qt(γ)) is concave in qt(γ). We may thus conclude

that the Lagrangian is concave in qt(γ) if

κF (γ) + Λ(γ)

is non-decreasing for all γ ∈ [γ, γt]. Using the constructed Λ(γ) and referring to part (ii)

of Proposition 1, we see that κF (γ) + Λ(γ) is non-decreasing for all γ ∈ [γ, γt] if the jumps

in Λ(γ) at γ and γH(γt) are non-negative. We verify these jumps are indeed non-negative

below.

We now show that the cap allocation q?t maximizes the Lagrangian. To this end, we use

the sufficiency part of Lemma A.2 in Amador et al. (2006), which concerns the maximization

of concave functionals on a convex cone. In our case, we need to extend the set Q to be

[0,∞), making our choice set Φ a convex cone. To do this, we follow Amador and Bagwell

(2013) and extend b and w to the entire non-negative ray of the real line. We can then apply

Lemma A.2 to the extended Lagrangian with the choice set Φ̂ ≡ {q|q : Γt → <+; and q

non-increasing}.
32Observe that h(γ) ≡

∫ γt
γ
qt(γ̃)dγ̃ exists (as qt is bounded and measurable by monotonicity) and is

absolutely continuous. Observe as well that Λ(γ) ≡ Λ1(γ) − Λ2(γ) is a function of bounded variation,
as it is the difference between two non-decreasing and bounded functions. We may thus conclude that∫ γt
γ
h(γ)dΛ(γ) exists (it is the Riemman-Stieltjes integral), and integration by parts can be done as follows:∫ γt

γ
h(γ)dΛ(γ) = h(γ)Λ(γ) − h(γ)Λ(γ) −

∫ γt
γ

Λ(γ)dh(γ). Given that h(γ) is absolutely continuous, we can

replace dh(γ) with −qt(γ)dγ.
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Following the arguments in Amador and Bagwell (2013), we can then establish that the

cap allocation q?t maximizes the Lagrangian if the Lagrangian is concave and the following

first order conditions hold:

∂L(q?t ; q
?
t ) = 0

∂L(q?t ;x) ≤ 0 for all x ∈ Φ,

where ∂L(q?t ;x) is the Gateaux differential of the Lagrangian in (13) in the direction x.33

Importantly, the Lagrangian in (13) is evaluated using our constructed multiplier functions.

Taking the Gateaux differential of the Lagrangian in (13) in direction x ∈ Φ, we get34

∂L(q?t ;x) =

∫
Γt

(
wq(γ, q

?
t (γ))f(γ)− Λ(γ)

)
x(γ)dγ

+

∫
Γt

(
− γ + b′(q?t (γ))

)
x(γ)dΛ(γ).

Using b′(qf (γ)) = γ and our knowledge of Λ and Ψ, we get that

∂L(q?t ;x) =

∫ γt

γH(γt)

(
wq(γ, qi(γt))f(γ)−A−κ(F (γt)−F (γ))−κ

(
b′(qi(γt))− γ

)
f(γ)

)
x(γ)dγ

Hence, integrating by parts, we get

∂L(q?t ;x) =

[∫ γt

γH(γt)

(
wq(γ, qi(γt))f(γ)−A−κ(F (γt)−F (γ))−κ

(
b′(qi(γt))−γ

)
f(γ)

)
dγ

]
x(γt)

−
∫ γt

γH(γt)

[∫ γ

γH(γt)

(
wq(γ̃, qi(γt))f(γ̃)− A− κ(F (γt)− F (γ̃))− κ

(
b′(qi(γt))− γ̃

)
f(γ̃)

)
dγ̃

]
dx(γ)

Now, we use
∫ a
b
{(F (c)− F (x)) + (d− x)f(x)} dx = (a−b)(F (c)−F (a))+(d−b)(F (a)−F (b))

to get that

∂L(q?t ;x) =

[∫ γt

γH(γt)

wq(γ, qi(γt))f(γ)dγ − (γt − γH(γt))A

33Given a function T : Ω→ Y , where Ω ⊂ X and X and Y are normed spaces, if for x ∈ Ω and h ∈ X the
limit

lim
α↓0

1

α
[T (x+ αh)− T (x)]

exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T (x;h).
34Existence of the Gateaux differential follows from Lemma A.1 in Amador et al. (2006). See Amador and

Bagwell (2013) for further details concerning the application of this lemma.
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− κ(b′(qi(γt))− γH(γt)) (F (γt)− F (γH(γt)))

]
x(γt)

−
∫ γt

γH(γt)

[∫ γ

γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃ − (γ − γH(γt))A

− κ ((γ − γH(γt)) (F (γt)− F (γ)) + (b′(qi(γt))− γH(γt)) (F (γ)− F (γH(γt))))

]
dx(γ)

Given that (b′(qi(γt)) − γH(γt))F (γH(γt)) = 0, as γH(γt) < γt and b′(qi(γt)) = γH(γt) if

γH(γt) ∈ (γ, γ), the above becomes:

∂L(q?t ;x) =

[∫ γt

γH(γt)

wq(γ, qi(γt))f(γ)dγ − (γt − γH(γt))A

+ κ(γH(γt)− b′(qi(γt)))F (γt)

]
x(γt)

−
∫ γt

γH(γt)

[∫ γ

γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃ − (γ − γH(γt))A

− κ (γ − γH(γt))F (γt) + κ (γ − b′(qi(γt)))F (γ)

]
dx(γ)

Using the definition of G in equation (4), we can rewrite the above as

∂L(q?t ;x) = (G(γt|γt)− A)(γt − γH(γt))x(γt)−
∫ γt

γH(γt)

(G(γ|γt)− A)(γ − γH(γt))dx(γ).

Using (4) and (12), we also observe that

G(γt|γt) = A (14)

and thus

∂L(q?t ;x) = −
∫ γt

γH(γt)

(G(γ|γt)− A)(γ − γH(γt))dx(γ). (15)

We are now ready to evaluate the first order conditions.

Note that it follows immediately that ∂L(q?t ; q
?
t ) = 0 as q?t is constant for γ ∈ [γH(γt), γt].

If G(γ|γt) ≤ A = G(γt|γt) for all γ ∈ [γH(γt), γt], then for any non-increasing x ∈ Φ, it

follows that ∂L(q?t ;x) ≤ 0, which is provided by part (i) of Proposition 1.

Recall also that we require A ≥ 0, since Φ must be non-decreasing. To see that this
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inequality holds, note that

A = κ

[
γH(γt)− b′(qi(γt))

γt − γH(γt)

]
F (γt) +

1

γt − γH(γt)

∫ γt

γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃.

By the definition of γH , we have that qi(γt) ≥ qf (γH(γt)). Note also that b′(qf (γH(γt))) =

γH(γt), and concavity of b implies that b′(qi(γt)) ≤ b′(qf (γH(γt))) = γH(γt). So the first term

in the previous equation is non-negative. Finally, note that wq(γ, q) = P (q)− γ + P ′(q)q +
1
α
v′(q) = P (q)− γ − 1−α

α
qP ′(q). Thus

wq(γt, qi(γt)) = P (qi(γt))− γt −
1− α
α

qi(γt)P
′(qi(γt))

=
σ

qi(γt)
− 1− α

α
qi(γt)P

′(qi(γt)) ≥ 0

where the last equality follows from (P (qi(γt)) − γt)qi(γt) = σ, by the definition of qi. But

we also have that

wq(γ, q) > wq(γ
′, q)

for all γ < γ′, and thus

wq(γ, qi(γt)) ≥ wq(γt, qi(γt)) ≥ 0

for γ ≤ γt. Hence, we can also sign the integral term:
∫ γt
γH(γt)

wq(γ̃, qi(γt))f(γ̃)dγ̃ ≥ 0. Taken

together, the above implies that A ≥ 0.

As discussed above, we now finish the argument that κF (γ) + Λ(γ) is non-decreasing for

all γ ∈ [γ, γ] by showing that the potential jumps in Λ(γ) are non-negative. There are two

cases to consider. The first case is where γH(γt) > γ. In this case, there are two jumps, one

at γ and one at γH(γt). For the jump at γH(γt), we get

A+ κ(F (γt)− F (γH(γt)))− wq(γH(γt), qf (γH(γt))f(γH(γt)) = G(γt|γt)−G(γH(γt)|γt)

where G(γH(γt)|γt) = −κ [F (γt)− F (γH(γt))] + wq(γH(γt), qf (γH(γt))f(γH(γt)). Part (i) of

Proposition 1 guarantees that G(γt|γt) ≥ G(γH(γt)|γt), and thus the jump at γH(γt) is

non-negative.

The jump in Λ(γ) at γ is non-negative, since wq(γ, qf (γ))f(γ) > 0.

Finally, for the case where γH(γt) = γ, there is only one jump, at γ. The jump is

A+ κF (γt)

which is positive, given that we have shown that A ≥ 0.
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To complete the proof, we use Theorem 1 in Amador and Bagwell (2013). To apply

this theorem, we set 1. (i) x0 ≡ q?t ; (ii) X ≡ {qt|qt : Γt → Q}; (iii) f to be given by the

negative of the objective function,
∫

Γt
w(γ, qt(γ))dF (γ), as a function of qt ∈ X; (iv) Z ≡

{(z1, z2, z3)|z1 : Γt → R, z2 : Γt → R and z3 : Γt → R with z1, z2, z3 integrable }; (v) Ω ≡ Φ;

(vi) P ≡ {(z1, z2, z3)|(z1, z2, z3) ∈ Z such that z1(γ) ≥ 0, z2(γ) ≥ 0 and z3(γ) ≥ 0 for all γ ∈
Γt}; (vii) Ĝ (which is referred to as G in Theorem 1) to be the mapping from Φ to Z given

by the left hand sides of inequalities (9), (10) and (11); (viii) T to be the linear mapping:

T ((z1, z2, z3)) ≡
∫

Γt

z1(γ)dΛ1(γ) +

∫
Γt

z2(γ)dΛ2(γ) +

∫
Γt

z3(γ)dΨ(γ)

where Λ1, Λ2 and Ψ being non-decreasing functions implies that T (z) ≥ 0 for z ∈ P . We

have that

T (Ĝ(x0)) ≡
∫

Γt

(∫ γt

γ

q?t (γ̃)dγ̃ + U + γq?t (γ)− b(q?t (γ)) + σ

)
d(Λ1(γ)− Λ2(γ))

−
∫

Γt

(
− γq?t (γ) + b(q?t (γ))− σ

)
dΨ(γ) = 0

where U is evaluated at the q?t allocation, and where the last equality follows from the

q?t allocation and the proposed multipliers. We have found conditions under which the

proposed allocation, q?t , minimizes f(x) + T (Ĝ(x)) for x ∈ Ω. Given that T (Ĝ(x0)) = 0,

then the conditions of Theorem 1 hold and it follows that q?t solves minx∈Ω f(x) subject to

−Ĝ(x) ∈ P , which is Problem P ′t .

B.1 Proof of Corollary 1

Proof. Letting qi and γH represent qi(γt) and γH(γt), respectively, we start with the following

manipulations:

G(γ|γt) = −κF (γt) + κ
γ − b′(qi)
γ − γH

F (γ) +
1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi) +

1

α
v′(qi)

)
f(γ̃)dγ̃

= −κF (γt) + κ
γ

γ − γH
F (γ)− κ b′(qi)

γ − γH
F (γ)

+ κ
b′(qi)

γ − γH
F (γH)− κ b′(qi)

γ − γH
F (γH) +

1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi) +

1

α
v′(qi)

)
f(γ̃)dγ̃

= −κF (γt) +
κ

γ − γH

∫ γ

γH

(γ̃f(γ̃) + F (γ̃))dγ̃ − κ b′(qi)

γ − γH
(F (γ)− F (γH))
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+
1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi) +

1

α
v′(qi)

)
f(γ̃)dγ̃

= −κF (γt) +
κ

γ − γH

∫ γ

γH

(γ̃f(γ̃) + F (γ̃)− b′(qi)f(γ̃))dγ̃

+
1

γ − γH

∫ γ

γH

(
−γ̃ + b′(qi) +

1

α
v′(qi)

)
f(γ̃)dγ̃

= −κF (γt) +
1

γ − γH

∫ γ

γH

[
κF (γ̃) +

1

α
v′(qi)f(γ̃) + (κ− 1)(γ̃ − b′(qi))f(γ̃)

]
dγ̃

= −κF (γt) +
1

γ − γH

∫ γ

γH

M2(γ̃)dγ̃,

where we use in the third equality above that γH−b′(qi)
γ−γH

F (γH) = 0 and where we define

M2(γ̃) ≡ κF (γ̃) +
1

α
v′(qi)f(γ̃) + (κ− 1)(γ̃ − b′(qi))f(γ̃).

Thus,

(γ − γH)G(γ|γt) = −κ(γ − γH)F (γt) +

∫ γ

γH

M2(γ̃)dγ̃.

Taking a derivative with respect to γ, for γ > γH , we obtain

(γ − γH)G′(γ|γt) +G(γ|γt) = −κF (γt) +M2(γ)

and thus

(γ − γH)G′(γ|γt) = M2(γ)− 1

γ − γH

∫ γ

γH

M2(γ̃)dγ̃.

It follows that, if M ′
2(γ) ≥ 0, then G′(γ|γt) ≥ 0. Now note that

M ′
2(γ) = κf(γ) +

1

α
v′(qi)f

′(γ) + (κ− 1)(γ − b′(qi))f ′(γ) + (κ− 1)f(γ)

= (2κ− 1)f(γ) + κ(γ − b′(qi))f ′(γ) + (−γ + b′(qi) + v′(qi)/α)f ′(γ).

Recall that

γ − b′(qi) ≥ 0

for γ ≥ γH . In addition,

− γ + b′(qi) + v′(qi)/α = −γ + b′(qi) + v′(qi) +

(
1

α
− 1

)
v′(qi)
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= (P (qi)− γ) +

(
1

α
− 1

)
v′(qi) ≥ 0 for γ ≥ γH

where we use that b′(qi) + v′(qi) = P (qi) and where the inequality follows from v′(qi) > 0,

α ∈ (0, 1], and that P (qi) ≥ γ for all types in [γH , γt] (so that they can make profits and

cover the fixed cost σ ≥ 0). Hence,

M ′
2(γ) = (2κ− 1)f(γ) + κ(non-negative term)f ′(γ) + (non-negative term)f ′(γ).

Thus, κ ≥ 1/2 and f ′(γ) ≥ 0 together are sufficient to guarantee that M ′
2(γ) ≥ 0 and thus

that G(γ|γt) is non-decreasing for any γt. Hence, part (i) of Proposition 1 then holds for all

γt ∈ (γ, γ].

Finally note that

M ′
1(γ) = κf(γ) +

1

α
v′′(qf (γ))q′f (γ)f(γ) +

1

α
v′(qf (γ))f ′(γ).

Using q′f (γ) = 1/b′′(qf (γ)) and the definition of κ, we obtain that

M ′
1(γ) ≥ (2κ− 1)f(γ) +

1

α
v′(qf (γ))f ′(γ) ≥ 0

where the second inequality follows from κ ≥ 1/2 and f non-decreasing. Thus part (ii) of

Proposition 1 also holds for all γt ∈ (γt, γ]. We can thus use Proposition 2 to obtain the

desired result.
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