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Abstract

We consider the effi ciency of market entry in single- and two-sector versions of the
Melitz-Ottavanio (MO) model, where differently from the MO model our two-sector
model does not involve an outside good. For the one-sector MO model, we show
that the market level of entry achieves a (local) welfare maximum. For a two-sector
MO model without an outside good, we show that the welfare results are exactly
similar to those in the one-sector model when the two sectors are symmetric. When
the two sectors are asymmetric and the level of asymmetry is suffi ciently small, we
identify a perturbation indicating a sense in which the market level of entry into
the “high-demand” sector is excessive. This intersectoral misallocation occurs at
the market equilibrium even though endogenous average markups are equal across
sectors. We also show how the outcomes induced by the planner’s direct choice of
entry levels alternatively can be induced through the appropriate choice of entry
tax/subsidy policies.
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1 Introduction

We consider the effi ciency of market entry in single- and two-sector versions of the Melitz
and Ottavanio (2008) model, where differently from the Melitz-Ottaviano (MO) model
our two-sector model does not involve an outside good. For each model version, our goal
is to determine whether the market level of entry is effi cient. When an ineffi ciency exists,
we also characterize welfare-improving adjustments in entry levels.
The MO model has two sectors, where one sector is a differentiated sector and the

other sector is an outside good. Bagwell and Lee (2020) examine trade policy in the
MO model. They also examine the effi ciency of market entry in a closed-economy model,
finding that entry into the differentiated sector is excessive (inadequate) (effi cient) if and
only if α > 2 · cmD (α < 2 · cmD) (α = 2 · cmD), where α is a demand parameter with higher
values indicating a greater preference for differentiated goods relative to the outside good
and where cmD is the cutoff cost level for surviving varieties as determined in the market
equilibrium. The cutoff level cmD is independent of α in this outside-good model. As
Bagwell and Lee discuss, an understanding of the effi ciency properties of market entry is
essential for understanding trade policy and agreements in the two-country MO model of
trade.
We focus here on the effi ciency of market entry in a closed-economy setting for for-

mulations of the MO model in which the outside good is absent. We first examine a
single-sector version of the MO model. Demidova (2017) has previously studied optimal
unilateral tariffs in this single-sector model. We focus here on the effi ciency properties of
the market level of entry.1 Our first main result is that the market level of entry achieves a
(local) welfare maximum in the single-sector model. This result obtains even though entry
has external effects on firms and consumers. The result also carries the following specific
implication: the entry ineffi ciency characterized by Bagwell and Lee is attributable to the
fact that the MO model has multiple sectors.
We next examine whether the ineffi ciency of market entry in the MO model is sensitive

to the way in which the “second”sector is modeled. To this end, we replace the assumption
that the second sector is an outside-good sector with the alternative assumption that
the second sector is another differentiated sector, where the upper-tier consumer utility
function is additively separable across the two sectors. We conduct two exercises. In
the first exercise, we consider a symmetric setting in which the demand paramater α
takes the same value in both sectors: α1 = α2. For this symmetric setting, we analyze the
implications of a small perturbation in which the planner symmetrically changes the levels

1Demidova (2017) notes that the level of entry in the single-sector model is in fact independent of
tariffs and trade costs. As we discuss further in footnote 8, we allow the planner directly to choose the
level of entry, where the resulting market outcomes can be replicated with the appropriate selection of
entry tax/subsidy policies.
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of entry in the two sectors. Our second main result is that, for this symmetric setting
and relative to this perturbation class, the market level of entry satisfies the first-order
conditions for welfare maximization, just as in the one-sector model. Our second exercise
allows that the sectors may be asymmetric, in that the demand parameter α is allowed to
take different values across the sectors: α1 6= α2 is allowed. For this setting, we consider
a small perturbation in which the planner increases the level of entry into sector 1 while
simultaneously decreasing the level of entry into sector 2 in such a manner as to ensure
that the marginal utility of income λ for the consumer is unaltered. For suffi ciently small
asymmetries, we show that this perturbation raises (lowers) (does not change) welfare
if and only if α1 < α2 (α1 > α2) (α1 = α2). Thus, in this sense, the market provides
excessive entry into the sector s ∈ {1, 2} with the highest value for αs.
To interpret our findings, we begin with the single-sector model. Additional entry in

this model is consistent with a resource constraint, since additional entry also impacts
variety-level consumption through its impact on the marginal utility of income λ and the
critical cost cutoff level cD. We find that the market trades off these considerations in
an effi cient manner: the market level of entry achieves a (local) welfare maximum in the
single sector model. We show that this finding can be understood by considering the
impact of additional entry on aggregate output.2 Starting at the market equilibrium, we
find that additional entry introduces offsetting effects on λ and cD such that the number
of surviving varieties (the extensive margin) and the expected variety-level output condi-
tional on survival (the intensive margin) are each unaffected to the first order, ensuring
that aggregate output and thus welfare are also unaffected to the first order.
For the two-sector model, we show that our first exercise may be interpreted in an

manner that is analogous to the interpretation just given for the one-sector model. Just
as in our analysis of the one-sector model, the symmetric change in entry levels induces
a change in λ and impacts variety-level consumption through this channel. Indeed, when
the two-sector model has a symmetric setting and is subjected to a symmetric change in
sectoral entry levels, the results are exactly similar to those in the one-sector model.
Our second exercise for the two-sector model, however, introduces an additional con-

sideration, since in the asymmetric two-sector model the market may misallocate resources
across sectors. To isolate this consideration, we start at the market equilibrium and in-
crease the level of entry into the first sector while adjusting the level of entry into the
second sector so as to ensure that the marginal utility of income λ is unchanged. We show
that a small perturbation of this kind necessarily involves a reduction in the level of entry
into the second sector. With this experiment, we thus eliminate intensive margin effects
that are induced via a change in λ. Assuming that the level of asymmetry is suffi ciently

2As Demidova (2017) shows, welfare can be expressed as a function of aggregate output in the one-
sector MO model.
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small, we show that this perturbation lowers welfare when α1 > α2, a finding that in
this sense is consistent with a business-stealing intuition under which the market provides
excessive entry into “high-demand”sectors.
Our second exercise shares qualitative features with the closed-economy analysis by

Bagwell and Lee (2020); in both cases, the marginal utility of income λ remains fixed,
and so variety-level consumption is not impacted by changes in λ. In addition, we find
that the market provides excessive entry into the sector s with the highest value for αs,
a finding which is broadly analogous to the findings by Bagwell and Lee (2020) regarding
excessive entry into the differentiated sector in the model with an outside good when α
is high (namely, when α > 2 · cmD in that model).3
We do not intend to argue against the value of (partial-equilibrium) models with an

outside-good sector. Such models are highly tractable and provide valuable insights for
a range of policy analyses. At the same time, some policies may generate income effects
that invite a general-equilibrium analysis. We also note that two-sector models with an
imperfectly competitive sector and an outside-good sector are typically structured in such
a way as to impose intersectoral markup heterogeneity: markups are typically positive in
the imperfectly competitive sector and absent in the outside-good sector. This built-in
asymmetry can have implications for resource misallocation.
By comparison, in the two-sector model considered in the current paper, the average

markup is symmetric across sectors, even when preferences are asymmetric (α1 6= α2).4

In this way, we shut down the possibility that resources are misallocated due to markup
asymmetry across sectors. Since both sectors are imperfectly competitive, our approach
also differs in that a reallocation of entry across sectors creates potential externalities
for consumer and producer interests in both sectors. These externalities account for
the welfare gain from entry reallocation that we establish for the two-sector model with
asymmetric preferences.
Our research relates interestingly to work by Epifani and Gancia (2011). They exam-

ine a multi-sector model that features between- but not within-sector heterogeneity. For a
class of models, they show that, under free entry and when the preference for variety dif-
fers across sectors, there exists no markup distribution such that the market equilibrium

3At a broad level, our second exercise thus suggests directions in which the qualitative findings of
Bagwell and Lee (2020) may extend to a multi-sector MO model without an outside good. A complete
analysis of this relationship, however, would require placing the multi-sector model considered here into
a two-country model of trade policies and agreements. This is beyond the scope of the current effort but
is an important direction for future research.

4We define the average markup in a sector as the ratio of the average price to the average marginal
cost in that sector, where averages are taken over surviving firms. The average markup is equal across
sectors in our two-sector model, even after entry is reallocated away from the market equilibrium level.
We note as well that, under free entry, the difference between the average price and average marginal
cost in a sector is also independent of the sector at the market equilibrium. This difference, however,
may become asymmetric across sectors following a reallocation of entry.
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replicates the first-best allocation. Markup symmetry is thus not suffi cient for first-best
effi ciency in this setting. Similarly, in our analysis of the two-sector model with asymmet-
ric preferences (α1 6= α2) across sectors, we establish a welfare gain from a reallocation of
entry across sectors even through the average markup does not differ across sectors. But
our analysis also differs in several respects. We include within-sector firm heterogeneity,
focus on second-best effi ciency and show in this context that market entry is effi cient in
single-sector and symmetric two-sector models, and establish a specific welfare-improving
entry reallocation in our asymmetric two-sector model that entails reducing entry into
the “high-demand”sector.
In other related work, Campolmi et al (2014) consider a two-sector monopolistic com-

petition model, where CES preferences are specified for the differentiated sector, the other
sector is an outside good sector and the upper-tier utility function takes a Cobb-Douglas
form. They find that the market level of entry is ineffi cient and too low, and they show
that a wage subsidy that targets the monopolistic distortion can implement the first-best
outcome. Bagwell and Lee (2018) focus on the effi ciency of entry in a two-sector model of
monopolistic competition, where CES preferences and heterogeneous firms are specified
for the differentiated sector, the other sector is an outside-good sector and the upper-tier
utility function takes an additively separable form. They also find that the market level
of entry is ineffi cient and too low. Dhingra and Morrow (2019) consider a family of one-
sector monopolistic competition models with heterogeneous firms and additively separable
preferences, and they show that the market outcome is first best under CES preferences.
The preferences that we consider here do not fit in the family that they consider, and
we also restrict attention to second-best intervention that targets the number of entrants.
Like Bagwell and Lee (2020), Nocco et al (2014) analyze some of the effi ciency properties
of the market outcome in the original MO model with an outside good. See Bagwell and
Lee (2020) for a detailed discussion of the differences between these two papers.5

Finally, our paper is related to an Industrial Organization literature that considers
the effi ciency of entry in an imperfectly competitive sector when firms are symmetric
and an outside-good sector also exists. Prominent contibutions to this literature include
Mankiw and Whinston (1986) and Spence (1976). We share with this literature a focus
on the second-best problem of a planner who can control the number of firms but not the
conduct of firms. This literature finds that the level of entry is typically ineffi cient, due
to the associated business-stealing and consumer-surplus externalities. Differently from
this research, we eliminate the outside-good sector, include heterogeneous firms, and find
that the market level of entry is effi cient in the benchmark one-sector model.
Our analysis is organized as follows. In Section 2, we develop the one-sector MOmodel

5See also Spearot (2016) for a multi-sector, multi-country version of the MO model in which the
outside-good sector is removed. He provides counterfactual analyses of several trade-policy shocks.
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and present our welfare finding for this model. In Section 3, we present the two-sector
MO model while allowing for entry policies (i.e., subsidies or taxes for the cost of entry).
We then analyze our two welfare exercises for the two-sector MO model in Section 4. In
Section 5, we show the outcomes induced by the planner’s direct choice of entry levels
alternatively can be induced by an appropriate choice of entry tax/subsidy policies, and
vice versa. Section 6 concludes. Remaining proofs are contained in the Appendix.

2 One-sector MO model

In this section, we assume:

1. A planner decides the number of entrants NE.

2. The mass of NE firms observe their marginal production costs c’s and decide how
much to produce (including the case of not producing). The decisions of NE firms
determine prices p (c) and the number of varieties N = G (cD)NE, where G refers
to the Pareto distribution function and cD refers to the marginal cost of a firm
indifferent between producing or not.

3. For the given prices and varieties, consumers maximizes utility.

2.1 Consumer’s problem

The economy contains a unit mass of identical consumers, each supplying a unit of labor in
inelastic fashion to a competitive labor market. We normalize the wage as 1. Consumers
also hold symmetric shares of any aggregate net profit, the value of which an individual
consumer takes as fixed when choosing consumption.
With respect to #3 above, the consumer’s welfare maximization problem can be writ-

ten as follows

max
qi

U = α

∫
i∈Ω

qidi−
1

2
γ

∫
i∈Ω

(qi)
2 di− 1

2
η

(∫
i∈Ω

qidi

)2

s.t. ∫
i∈Ω

piqidi = 1 + Π (1)

where qi and pi represent the consumption and price of variety i in the set Ω of available
varieties, wage income is normalized as 1 and Π refers to the aggregate net profit. We
assume that the preference parameters α, γ and η are all positive.
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To solve the consumer’s problem, we consider a Lagrangian equation as follows

L = U + λ

(
1 + Π−

(∫
i∈Ω

piqidi

))
,

where λ ≥ 0 is the multiplier for the consumer’s optimization problem above. Letting
Q ≡

∫
i∈Ω
qidi, we represent the FOC with respect to qi as

α− γ · qi − η ·Q = λpi. (2)

Integrating (2) over the set of varieties for which qi > 0 and letting N be the measure of
consumed varieties in Ω, we obtain

α− γ · Q
N
− η ·Q = λp̄

and thus
α− λp̄
η + γ

N

= Q,

where p̄ is the average price of consumed varieties.
Using (2), we see that (α−η·Q−γ·qi)

λ
= pi for consumed varieties. Let us now define pmax

as the “choke price.”From the foregoing, we may confirm

pmax ≡ α− η ·Q
λ

=
1

λ

(
γ · α + λ · η ·N · p̄

η ·N + γ

)
. (3)

Using (2) and (3), the inverse demand can be written as

p (q) = pmax − γ

λ
· q. (4)

2.2 Firm’s problem

With respect to #2 above, profit maximization for a firm with marginal production cost
c delivers the profit function6

π (c) = max
q

(p (q)− c) q

Using (4), we characterize the solution to the firm’s problem as

q (c) =
λ (pmax − c)

2γ
. (5)

6Since firms are infinitesimal in size, we assume that each firm takes λ as given when solving its profit
maximization problem.
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This solution induces profit-maximizing price and maximized profit of the firm

p (c) =
pmax + c

2
(6)

π (c) =
λ

4γ
(pmax − c)2 .

For this model of monopolistic competition, a firm takes the demand intercept as
given and produces a positive quantity of its variety provided that its cost realization
is not higher than the intercept. In other words, a Zero Cutoff Profit (ZCP) condition
determines the cost cutoff cD as

π (cD) = 0.

or equivalently
pmax = p (cD) = cD.

Costs are distributed according to a Pareto distribution

G(c) =

(
c

cM

)k
for c ∈ [0, cM ] where k > 1 and cM > 0.7 Given this distribution, we have that

c ≡ E(c|c ≤ cD) =

(
k

k + 1

)
cD.

Using (6) and pmax = cD, we find

p ≡ E(p(c)|c ≤ cD) =

(
cD + c

2

)
.

It now follows that

p =

(
2k + 1

2(k + 1)

)
cD.

Observe that that the average markup, µ ≡ p/c, is a simple function of the parameter k:

µ =
2k + 1

2k
.

Referring again to (3) and using pmax = cD, we can represent the number of varieties
as

N =
γ (α− λ · pmax)

λ · η · (pmax − p̄) =
γ (α− λ · cD)

λ · η (cD − p̄)
.

7We assume throughout this section that cM > cD.
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Plugging in the expression just derived for p, we obtain

N =
2 (k + 1) γ

η

(α− λ · cD)

λ · cD
. (7)

Using only (7), we see that, once values for cD and λ are obtained, the value for the number
of available varieties is determined. For cD > 0, we note that N is strictly decreasing with
respect to cD for a given value of λ > 0.
The number of available varieties can also be expressed as a function of the level of

entry and the cost cutoff level as

N = NE ·G(cD). (8)

Hence, using (8), the value for the number of available varieties can also be determined
given the number of entrants and the cost cutoff level.
Finally, using (7), (8) and the Pareto distribution, we can express the relation between

N and NE as:

NE =
N

G (cD)
=

2 (k + 1) γ (cM)k

η

(α− λ · cD)

λ · (cD)k+1
. (9)

The expression in (9) will be an important ingredient in our analysis below, when we
explore the implications of different values for NE for λ, cD and consumer welfare.8

2.3 Planner’s problem

We are now ready to proceed to #1 above and consider the planner’s choice of NE. The
planner seeks to choose NE so as to maximize consumer welfare under (i) a resource
constraint derived from (1), (ii) a constraint on the relationship between NE, cD and λ as
given in (9), and (iii) a profit-maximizing constraint under which the quantity of variety i
consumed is determined by the corresponding firm’s cost realization and profit-maximizing
output (including zero), as implied by (5) and pmax = cD. To state the planner’s problem,
we proceed by showing that the objective and constraints can be written in terms of
α,NE, cD and λ.9

8In Demidova (2017), the number of entrants is shown to be independent of trade costs and tariffs.
In this paper, we allow the planner directly to choose the number of entrants. As we show in Section
5 for a two-sector model, the planner’s choice can be replicated with the appropriate selection of entry
tax/subsidy policies. We thus use a different policy instrument from Demidova.

9For later use in a multi-sector setup, we include α as an independent variable for our objective and
constraint functions as defined below.
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We start with the objective function:

U = α

∫
i∈Ω

qidi−
1

2
γ

∫
i∈Ω

(qi)
2 di− 1

2
η

(∫
i∈Ω

qidi

)2

. (10)

To simplify U , we use (5), pmax = cD, (9) and the Pareto distribution to show that we
may re-write each term in (10) in terms of cD and λ. This is accomplished through the
establishment of two claims.
The first claim is that∫

i∈Ω

qidi = NE

∫ cD

0

q (c) dG (c) =
1

η
(α− λ · cD) . (11)

The first equality in (11) is true, given profit-maximizing behavior. For the second equal-
ity, using (5), setting pmax = cD, and using the Pareto distribution, we find that∫ cD

0

q (c) dG (c) =
(cD)k+1 (cM)−k λ

2 (1 + k) γ
.

Using this expression and (9), we thus have

NE

∫ cD

0

q (c) dG (c) =
2 (k + 1) γ (cM)k

η

(α− λ · cD)

λ · (cD)k+1

(cD)k+1 (cM)−k λ

2 (1 + k) γ

=
α− λ · cD

η
,

confirming (11). With (11) established, we can re-write the first and third terms in (10)
in terms of cD and λ.
The second claim is that∫

i∈Ω

(qi)
2 di = NE

∫ cD

0

q (c)2 dG (c) =
1

η

(α− λ · cD) (cD)λ

γ (2 + k)
. (12)

The first equality in (12) is again true, given profit-maximizing behavior. For the second
equality, we again use (5), set pmax = cD, and use the Pareto distribution. We find that∫ cD

0

q (c)2 dG (c) =
(cD)k+2 (cM)−k λ2

2 (1 + k) (2 + k) γ2
.

Using this expression and (9), we thus have
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NE

∫ cD

0

q (c)2 dG (c) =
2 (k + 1) γ (cM)k

η

(α− λ · cD)

λ · (cD)k+1

(cD)k+2 (cM)−k λ2

2 (1 + k) (2 + k) γ2

=
1

η

(α− λ · cD)λcD
γ (2 + k)

,

confirming (12). With (12) established, we can re-write the second term in (10) in terms
of cD and λ.
With the two claims established, we now plug (11) and (12) into (10). After simplifi-

cation, we obtain that

U = α

∫
i∈Ω

qidi−
1

2
γ

∫
i∈Ω

(qi)
2 di− 1

2
η

(∫
i∈Ω

qidi

)2

=
(α− λ · cD)

2η

(
α +

(
1 + k

2 + k

)
λ · cD

)
.

We may thus re-write U as a function of (α, cD, λ). Formally, we write

U = u (α, cD, λ)

where

u (α, cD, λ) ≡ (α− λ · cD)

2η

(
α +

(
1 + k

2 + k

)
λ · cD

)
. (13)

We turn next to the resource constraint as given by (1). In order to simplify the
planner’s problem, we rewrite (1) under utility- and profit-maximizing behavior as

NE

∫ cD

0

p (c) q (c) dG (c) = 1 +NE

[∫ cD

0

(p (c)− c) q (c) dG (c)− fe
]
,

where the bracketed term on the RHS of this equation is the expected profit for a firm
that incurs the fixed cost fe > 0 to observe its cost realization. After simplification, the
resource constraint takes the following form:

NE

(∫ cD

0

c · q (c) dG (c) + fe

)
= 1. (14)

Using (5), pmax = cD, (9) and the Pareto distribution, and after simplification, we can
write the resource constraint (14) as

R (α, cD, λ) =
η (2 + k)

γ · φ (15)
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where

R (α, cD, λ) ≡ (α− λ · cD)

λ · (cD)k+1

(
(cD)k+2 k · λ

γ · φ + 1

)
(16)

and φ = 2 (k + 1) (k + 2) (cM)k fe.
Next, using (9), we also define the number of entrants NE as a function of (α, cD, λ)

as below:

NE = Ne (α, cD, λ) ≡ 2 (k + 1) γ (cM)k

η

(α− λ · cD)

λ · (cD)k+1
. (17)

Finally, we have already embedded the profit-maximizing constraints into our representa-
tions of the utility function, the resource constraint and the costraint on the relationship
between NE, cD and λ as given as given by (13), (15), (16) and (17), respectively.
Therefore, the planner’s problem can be represented as:

max
NE

u (α, cD, λ)

s.t.

R (α, cD, λ) =
η (2 + k)

γ · φ (18)

and
NE = Ne (α, cD, λ) > 0 (19)

where u (α, cD, λ), R (α, cD, λ) and Ne (α, cD, λ) follow from (13), (16) and (17), respec-
tively.
To understand the planner’s problem, suppose that the planner entertains a specific

value for NE. Given this value, we may regard the constraints (18), and (19) as defining
a 2 × 2 system of equations, in which cD and λ are endogenous while NE is exogenous.
Accordingly, we can conduct a traditional comparative statics exercise to determine how
cD and λ vary with respect to NE. We can then feed this information into the planner’s
optimization problem with respect to NE. Finally, while our representation of the plan-
ner’s problem does not explicitly include the number of available varieties, N , we recall
from (7) that this value can be easily recovered once cD and λ are determined.
For the planner’s problem, our main goal is to determine whether, starting at market

equilibrium, additional entry raises welfare or not. To this end, we first define the market
equilibrium solution, (cmktD , λmkt, Nmkt

E ) as the solution to the 3 × 3 system of equations
that emerges when constraints (18), and (19) are joined with a third equation, the Free
Entry condition, which is defined as follows:∫ cmktD

0

(p (c)− c) q (c) dG (c) = fe. (20)
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For our purposes here, the key property of the market solution is that a relationship
between cmktD and λmkt is implied:

λmkt =
γ · φ(
cmktD

)2+k
. (21)

This relationship follows from (20), after using (5), (6), setting pmax = cD, and using the
Pareto distribution. By plugging (21) into (18) and (19), we can then pin down cmktD , λmkt,

and Nmkt
E .

Let us now represent the solutions to the 2 × 2 system of constraints (18) and (19)
as cD(NE) and λ(NE). We can then represent the first order condition for the planner’s
problem as

du

dNE

|NE=Nmkt
E

=
∂u

∂cD

dcD
dNE

+
∂u

∂λ

dλ

dNE

|NE=Nmkt
E

, (22)

where for reasons just discussed we focus on evaluating this condition at the market
equilibrium solution. We show below that, at the market solution, ∂u

∂cD
< 0, ∂u

∂λ
< 0,

dcD
dNE

< 0 and dλ
dNE

> 0. We also provide below an interpretation of (22) in terms of the
underlying changes induced by an increase in NE, starting at the market solution.
Formally, we maintain the assumption that a market solution exists satisfying (18),

(19) and (20) and at which Nmkt
E > 0, cmktD > 0 and λmkt > 0.10 We then appeal to the

implicit function theorem to ensure the existence of a solution (cD(NE), λ(NE)) to (18)
and (19) for NE suffi ciently close to Nmkt

E . To use this theorem, we require that, at the
market solution, the Jacobian determinant associated with (18) and (19) is non-zero. We
find that, at the market solution,

|J | ≡ ∂R

∂cD

∂NE

∂λ
− ∂R

∂λ

∂NE

∂cD
|NE=Nmkt

E
(23)

= −(α− λ · cD)(α + λkcD)λkck+2
D |NE=Nmkt

E
< 0,

where the inequality in (23) follows from (17) and our assumption that Nmkt
E > 0, cmktD > 0

and λmkt > 0.
Using the implicit function theorem, we also know that the derivatives dcD

dNE
and dλ

dNE

exist for NE suffi ciently close to Nmkt
E . Calculations reveal that

dcD
dNE

|NE=Nmkt
E

=
1

|J |
(
kφγ + αck+1

D

)( cD
φγ

)2

|NE=Nmkt
E

< 0 (24)

10Given our assumption that fe > 0 and the assumption that Nmkt
E > 0, we can show that cmktD > 0

and λmkt > 0, with both taking finite values.
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and
dλ

dNE

|NE=Nmkt
E

=
−1

|J |
(
kφγ + αck+1

D

)( 1

φγck+1
D

)
|NE=Nmkt

E
> 0 (25)

where the inequalities follows from (23) and the imposition of (21).
Our next step is to calculate how utility varies with cD and λ when evaluated at the

market solution. Using (13) and imposing (21), we find

∂u

∂cD
|NE=Nmkt

E
=

−γφ
2η(2 + k)c3+2k

D

(
αc1+k

D + 2(1 + k)γϕ
)
|NE=Nmkt

E
< 0 (26)

and
∂u

∂λ
|NE=Nmkt

E
=

−1

2η(2 + k)ckD

(
αc1+k

D + 2(1 + k)γϕ
)
|NE=Nmkt

E
< 0. (27)

At this point, we have established the signs of all the derivatives at the market solution
as reported just after (22).
We are now ready to evaluate the planner’s first order condition at the market solution.

Referring to (22), and using (23)-(27), we find that

du

dNE

|NE=Nmkt
E

=
∂u

∂cD

dcD
dNE

+
∂u

∂λ

dλ

dNE

|NE=Nmkt
E

= 0. (28)

Thus, the market level of entry satisfies the first order condition for the social planner.
To interpret (28), we first note that (21), (24) and (25) together imply that

dλ · cD
dNE

|NE=Nmkt
E

= λ · dcD
dNE

+ cD ·
dλ

dNE

|NE=Nmkt
E

= 0, (29)

which in turn implies from (7) that

dN

dNE

|NE=Nmkt
E

= 0. (30)

Thus, from (29) and (30), we see that starting at the market equilibrium, a higher level
of entry has offsetting effects on cD and λ, which serve to leave the number of varieties,
N , unchanged. A higher level of entry also affects the average price and consumer income
via the level of aggregate profits. Recalling that p =

(
2k+1

2(k+1)

)
cD, we see from (24) that

consumers gain from a strictly lower average price; however, they also suffer an income
loss associated with the reduction in aggregate profit (to a negative value).11 The value
of the income loss in turn interacts with the implied change in λ. The price and profit

11To verify that aggregate profit falls to a strictly negative value starting at the market solution when
NE is slightly increased, we may differentiate the LHS of (20) with respect to cD while using (6), setting
pmax = cD, and using the Pareto distribution. This exercise establishes that aggregate profit strictly rises
with cD. To complete the argument, we refer to (24).
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effects apparently balance out as well when evaluated at the market solution, ensuring
that the first order condition for social welfare maximization as given by (28) is satisfied.
We can also interpret (28) by considering the impact of entry on the aggregate output

enjoyed by consumers. As Demidova (2017) shows, consumer welfare can be expressed as
a function of aggregate output, Q. We can rewrite Q as

Q = N · q,

where
q ≡ E[q(c)|c ≤ cD].

Using (30), we already know that, starting at the market equilibrium, a slight increase in
entry has no effect of the number of available varieties, N . Using (5), setting pmax = cD,
and using the Pareto distribution, we find that

q =
λ · cD

2γ(k + 1)
.

Thus, by (29), we have that
dq

dNE

|NE=Nmkt
E

= 0.

Intuitively, the conditional average variety output is unchanged due to two offsetting
forces: starting at the market equilibrium, greater entry lowers the output on any surviving
variety but also lowers cD and thus eliminates the (low) output of the least effi cient
varieties. Hence, starting at the market solution, a slight increase in entry affects neither
the extensive margin N nor the (conditional) intensive margin q. Aggregate output and
thus consumer welfare are therefore also unaffected.
Our analysis so far has not treated the second order condition. We can show, however,

that the social planner’s welfare function is locally concave when evaluated at the market
solution.12 The following proposition establishes this final point:

Proposition 1 The entry level at the market equilibrium in the one sector MO model is
(locally) effi cient.

Proof. The proof of Proposition 1 is completed in the Appendix.

12Global optimality may be verified numerically for given parameter specifications. For example, when
α = 2, cM = 1, k = 1.1, fe = 0.1 and γ = η = 1, we may verify that the market entry level is given by
Nmkt
E = 4.76 and is the global optimum.
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3 Two-sector MOmodel without outside good: Mar-
ket outcomes for given entry policies

We consider the market outcomes in the two-sector MO model without an outside good,
when the government may influence the market level of entry by using an entry subsidy
or tax. Specifically, we assume

1. For each sector s ∈ {1, 2}, the government chooses an entry policy tse, where tse > 0

indicates an entry subsidy in sector s and tse < 0 indicates an entry tax in sector s.

2. The total entry subsidy (tax) is levied on (transferred to) consumers in a lump sum
manner.

3. Consumers and firms maximize their objectives as in standard market economy.

4. Entry is determined by the Free Entry condition.

In this section, we take the entry policies, tse for s ∈ {1, 2} as given and determine the
market outcomes. We begin our analysis by considering the consumer’s problem. We then
characterize profit maximizing behavior by firms and the resulting free entry condition.

3.1 Consumer’s problem

Just as in the one-sector model, the economy contains a unit mass of identical consumers,
each supplying a unit of labor in inelastic fashion to a competitive labor market, where
we now assume as well that there is costless labor mobility across sectors. We normalize
the wage as 1. Consumers also hold symmetric shares of any aggregate net profit or
any government transfer, the values of which an individual consumer takes as fixed when
choosing consumption.
For the two-sector model, we assume that the consumer’s upper level utility function

is additively separable, so that the consumer maximizes U1 + U2 where for s ∈ {1, 2}

Us = αs

∫
i∈Ωs

qsidi−
1

2
γ

∫
i∈Ωs

(qsi)
2 di− 1

2
η

(∫
i∈Ωs

qsidi

)2

(31)

with α1 possibly different from α2. We thus represent the consumer’s welfare optimization
problem as

max
{q1i}∈Ω1,{q2i}∈Ω2

U1 + U2

s.t. ∑
s∈{1,2}

∫
i∈Ωs

psiqsidi = 1 + TR +
∑

s∈{1,2}

Πs (32)
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where psi and qsi are the respective price and quantity of variety i in sector s in the set of
available varieties Ωs in sector s, wage income is normalized as 1, Πs represents aggregate
net profit in sector s and TR refers to the aggregate government transfer. As above, we
assume that the preference parameters α, γ and η are all positive.
We consider a Lagrangian equation as follows

L = U1 + U2 + λ

1 + TR +
∑

s∈{1,2}

Πs −
∑

s∈{1,2}

(∫
i∈Ωs

psiqsidi

) ,
where λ ≥ 0 is the multiplier for the consumer’s optimization problem. Letting Qs ≡∫
i∈Ωs

qsidi denote aggregate output in sector s, we represent the FOC with respect to qsi
as

αs − γ · qsi − η ·Qs = λpsi. (33)

As before, we integrate (33) over the set of varieties for which qsi > 0 and letting Ns be
the measure of consumed varieties in Ωs, we obtain

αs − γ ·
Qs

Ns

− η ·Qs = λp̄s

and hence
αs − λp̄s
η + γ

Ns

= Qs,

where p̄s is the average price of consumed varieties in sector s.
Using (33), we see that (αs−η·Qs−γ·qsi)

λ
= psi for consumed varieties. We now define

pmax
s as the “choke price” for varieties in sector s. From the foregoing, we may confirm
that

pmax
s ≡ αs − η ·Qs

λ
=

1

λ

(
γ · αs + λ · η ·Ns · p̄s

η ·Ns + γ

)
. (34)

Using (33) and (34), the inverse demand can be written as

ps (qs) = pmax
s − γ

λ
· qs. (35)

3.2 Firm’s problem

We turn now to firm behavior. Profit maximization for a firm with marginal production
cost c delivers the profit function13

πs (c) = max
q

(ps (q)− c) q

13As in the one-sector model, each firm takes λ as given when solving its profit maximization problem.
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Using (35), we characterize the solution to firm’s problem as

qs (c) =
λ (pmax

s − c)
2γ

. (36)

This solution in turn generates a corresponding profit-maximizing price and profit for the
firm:

ps (c) =
pmax
s + c

2
(37)

πs (c) =
λ

4γ
(pmax
s − c)2 .

For this (two-sector) model of monopolistic competition, a firm in a given sector takes
the demand intercept as given and produces a positive quantity of its variety provided
that its cost realization is no higher than the intercept. In other words, a Zero Cutoff
Profit (ZCP) condition determines the cost cutoff csD as

πs (csD) = 0.

or equivalently
pmax
s = ps (csD) = csD.

As in the one-sector model examined above, we assume that costs are distributed
according to a Pareto distribution that is symmetric across the two sectors:

G(c) =

(
c

cM

)k
for c ∈ [0, cM ] where k > 1 and cM > 0.14 Given this distribution, we recall

cs ≡ E(c|c ≤ csD) =

(
k

k + 1

)
csD.

Using (37) and pmax
s = csD, we find

ps ≡ E(ps(c)|c ≤ csD) =

(
csD + cs

2

)
.

It now follows that

ps =

(
2k + 1

2(k + 1)

)
csD.

Notice that the average markup in sector s, µs ≡ ps/cs, is in fact independent of s and

14As for the one-sector model, we assume throughout our analysis of the two-sector MO model that
cM > csD.
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indeed takes the same value as in the one-sector model: for s ∈ {1, 2},

µs = µ =
2k + 1

2k
.

Thus, the two-sector model considered here does admit markup heterogeneity.15

Using (34) and pmax
s = csD, we can represent the number of varieties as

Ns =
γ (αs − λ · pmax

s )

λ · η · (pmax
s − p̄s)

=
γ (αs − λ · csD)

λ · η (csD − ps)
.

Plugging in the expression just derived for ps, we obtain

Ns =
2 (k + 1) γ

η

(αs − λ · csD)

λ · csD
. (38)

Similar to the one-sector model, we see from (38) that, once values for csD and λ are
obtained, the value for the number of available varieties is determined. For csD > 0, we
note that Ns is strictly decreasing with respect to csD for a given value of λ > 0.
For a given sector s ∈ {1, 2}, the number of available varieties can also be represented

as a function of the level of entry and the cost cutoff level as

N s
E =

Ns

G (csD)
. (39)

Hence, using (39), the value for the number of available in sector s can also be determined
given the number of entrants and the cost cutoff level for this sector. Finally, using (38),
(39) and the Pareto distribution, we can further characterize the relation between Ns and
N s
E as

N s
E =

Ns

G (csD)
=

2 (k + 1) γ(cM)k

η

(αs − λ · csD)

λ · (csD)k+1
. (40)

3.3 Free Entry Condition

We focus in this section on the policy-induced market outcome; thus, the level of entry
is not a direct choice variable but rather is determined by entry policies via a free entry
requirement. Formally, we now impose the Free Entry (FE) condition∫ csD

0

πs (c) dG (c) = fe − tse (41)

15By contrast, the difference between ps and cs equals 2csD/(k + 1) and thus varies across sectors to
the extent that cost cutoff csD does.
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where tse > 0 refers to an entry subsidy in sector s (tse < 0 refers to an entry tax). The Free
Entry condition pins down csD under given λ. Specifically, using πs (c) = λ

4γ
(pmax
s − c)2,

pmax
s = csD and the Pareto distribution, we find from (41) that the following relationship
between csD and λ obtains at the policy-induced market equilibrium:

csD =

(
2 (k + 1) (k + 2) γ (cM)k (fe − tse)

λ

) 1
2+k

= λ−
1

2+k (fe − tse)
1

2+k γ
1

2+k φ̃
1

2+k . (42)

where φ̃ = 2 (k + 1) (k + 2) (cM)k.
As indicated in (40), the market number of available varieties then can be written as

N s
E =

Ns

G (csD)
=

2 (k + 1) γ (cM)k

η

(αs − λ · csD)

λ · (csD)k+1
(43)

3.4 Equilibrium characterization under fixed tse

Wemay now summarize our characterization of the equilibrium market outcomes for given
entry policies, tse.

1. Using (42), we may determine csD for given λ:

csD =

(
2 (k + 1) (k + 2) γ (cM)k (fe − tse)

λ

) 1
2+k

= λ−
1

2+k (fe − tse)
1

2+k γ
1

2+k φ̃
1

2+k . (44)

2. Using (43), we then may determine N s
E for given λ :

N s
E =

2 (k + 1) γ (cM)k

η

(αs − λ · csD)

λ · (csD)k+1
. (45)

3. Using (36) and (37), we may then determine qs (c) and ps (c) for given λ :

qs (c) =
λ (csD − c)

2γ
(46)

ps (c) =
csD + c

2
(47)

where pmax
s is replaced with csD by the ZCP condition.
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4. Using (45)-(47), we can then update the budget constraint (32) to determine λ :

∑
s∈{1,2}

N s
E

∫ csD

0

λ
(
(csD)2 − c2

)
4γ

dG (c) = 1−
∑

s∈{1,2}

N s
Et

s
e (48)

whereΠs = 0 for s ∈ {1, 2} by the Free Entry condition and TR = −
∑

s∈{1,2}N
s
Et

s
e.
16

Thus, (44), (45), and (48) pin down λ.

5. Hence, (44)-(48) determine a market equilibrium (cs∗D , N
s∗
E , N

s∗, λ∗, q∗s (c), p∗s (c))
for given entry policies, (t1e, t

2
e).

4 Two-sector MOmodel without outside good: Plan-
ner’s problem

In this section, we focus on planner’s problem when the planner can choose N1
E and N

2
E

in direct fashion. Thus, we put entry policies to the side in this section; however, in the
subsequent section, we show how entry policies can be used to replicate the planner’s
entry level choices. In the current section, we use the (undistorted) market equilibrium as
a starting point for comparative statics analyses. We can find the corresponding market
equilibrium outcomes by setting tse = 0 on results in Section 3.
The planner chooses N1

E and N
2
E to maximize consumer welfare under (i) a resource

constraint derived from the budget constraint (32) with TR = 0, (ii) a constraint on the
relationship betweenN s

E, c
s
D and λ as given in (40), and (iii) a profit-maximizing constraint

under which the quantity of variety i consumed is determined by the corresponding firm’s
cost realization and profit-maximizing output (including zero), as implied by (36) and
pmax
s = csD.
To begin, we note that the planner’s problem can be represented as choosing N1

E and
N2
E to maximize consumer’s welfare

max
N1
E ,N

2
E

U ≡ U1 + U2

16To confirm that the updated budget constraint (48) follows from the original budget constraint (32),
we rewrite (32) as ∑

s∈{1,2}

Ns
E

∫ csD

0

ps(c)qs(c)dG(c) = 1−
∑

s∈{1,2}

Ns
Et
s
e,

where we use that Πs = 0 for s ∈ {1, 2} by the Free Entry condition and TR = −
∑

s∈{1,2}N
s
Et
s
e. Using

(46) and (47), it is now straightforward to confirm (48).
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where

Us =

[
αs ·N s

E

∫ csD

0

qs (c) dG (c)− γ

2
N s
E

∫ csD

0

qs (c)2 dG (c)− η

2

(
N s
E

∫ csD

0

qs (c) dG (c)

)2
]

(49)
for s ∈ {1, 2} s.t. ∑

s∈{1,2}

N s
E

(∫ csD

0

c · qs (c) dG (c) + fe

)
= 1 (50)

where

N s
E =

2 (k + 1) γ (cM)k

η

(αs − λ · csD)

λ · (csD)k+1
for s ∈ {1, 2} (51)

qs (c) =
λ (csD − c)

2γ
for s ∈ {1, 2} (52)

and where λ ≥ 0 is the multiplier for the consumer’s Lagrangian problem

L = U1 + U2 + λ

1−
∑

s∈{1,2}

(
N s
E

∫
i∈Ωs

ps (c) qs (c) dG (c)− Πs

)
with ps (c) =

csD+c

2
.17

To interpret this formulation, we note that the consumer utility function represented
in (49) follows directly from (31) once profit-maximizing behavior is embedded. We note
further that (51) and (52) follow directly from (43) and (36) with pmax

s = csD, respectively.
Finally, to confirm that the resource constraint (50) follows from the budget constraint
(32) with TR = 0, we rewrite the latter as

∑
s∈{1,2}

N s
E

∫ csD

0

ps(c)qs(c)dG(c) = 1 +
∑

s∈{1,2}

N s
E

(∫ csD

0

(ps(c)− c) qs(c)dG(c)− fe
)

and simplify.
Following the approach taken in Section 2, we now proceed to rewrite the planner’s

problem with the objective and constraints expressed in terms of αs, N s
E, c

s
D and λ.

Proceeding as in Section 2 and using (51), we find that Us from (49) may be rewritten as
u(αs, c

s
D, λ) where the function u is defined in (13). Likewise, it is direct that (51) may

be rewritten as N s
E = Ne(αs, c

s
D, λ) where the function Ne is defined in (17). Finally, for

the resource constraint (50), we may proceed as in Section 2 while using (51), (52) and
the Pareto distribution to rewrite this constraint as

∑
s∈{1,2}R (αs, c

s
D, λ) = η(2+k)

γφ
, where

17Note also that the value for λ used for our analysis of the two-sector model may differ from that used
in the one-sector model.
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the function R is defined in (16).
We may thus state the planner’s problem as

max
N1
E ,N

2
E

∑
s∈{1,2}

u (αs, c
s
D, λ) (53)

s.t. ∑
s∈{1,2}

R (αs, c
s
D, λ) =

η (2 + k)

γφ
(54)

N s
E = Ne (αs, c

s
D, λ) > 0 for s ∈ {1, 2} (55)

where u (α, λ, cD), R (α, λ, cD), and Ne (α, λ, cD) are defined in (13), (16), and (17), re-
spectively.
The constraints (54) and (55) represent a 3× 3 system with endogenous variables c1

D,
c2
D and λ. We can thus do comparative statics exercises with respect to changes in the
exogenous variables, N1

E and N
2
E. With the comparative statics results in place, we can

then determine the effects of certain exogenous perturbations on consumer welfare. As
before, we consider small perturbations around the market equilibrium.
We maintain the assumption that the (undistorted) market equilibrium represented by

the vector (N1mkt
E , N2mkt

E , c1mkt
D , c2mkt

D , λmkt) exists satisfying (54), (55) and the Free Entry
condition (42) with t1e = t2e = 0 imposed, and at which for s ∈ {1, 2} we have N smkt

E > 0,
csmktD > 0 and λmkt > 0.18 We then appeal to the implicit function theorem to ensure the
existence of a solution to (54) and (55) for (N1

E, N
2
E) suffi ciently close to (N1mkt

E , N2mkt
E ).

To use this theorem, we require that, at the market solution, the Jacobian determinant
associated with (54) and (55) is non-zero.
We consider two kinds of comparative statics exercises. In the first exercise, we con-

sider a symmetric setting in which α1 = α2 ≡ α and analyze the implications of a small
perturbation in which the planner symmetrically changes N1

E and N
2
E (i.e., dN

1
E = dN2

E).
This exercise is similar to that already analyzed above for the one-sector model. We recall
that the change in the entry level for that model induced a change in λ and impacted
variety-level consumption through this channel. We find exactly analogous results for
the two-sector model. Hence, when the two-sector model has a symmetric setting and is
subjected to a symmetric change in sectoral entry levels, the results are exactly similar
to those in the one-sector model already considered. A second exercise considers a po-
tentially asymmetric setting where α1 may differ from α2. For this setting, we allow the

18With some abuse of notation, we use λmkt to represent the market equilibrium value for λ in the
two-sector model just as we do above in the one-sector model. Below, we distinguish between symmetric
settings (α1 = α2) and potentially asymmetric settings for the two-sector model, and we introduce addi-
tional notation as necessary to distinguish (undistorted) market equilibrium outcomes for these settings
from those in the one-sector model.
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planner to consider a small change in N1
E and N

2
E where the change is calibrated so that λ

is unaltered (i.e., dN1
E and dN

2
E are such that dλ = 0). We argue that this exercise shares

qualitative features with our analysis in Bagwell and Lee (2020) of the welfare effects of an
increase in entry into the differentiated sector, where the other sector is an outside good
sector. A unifying feature is that, in both cases, the marginal utility of income remains
fixed, and so variety-level consumption is not impacted by changes in the marginal utility
of income.

First exercise: We start with the first exercise. For this exercise, we assume that
the setting is symmetric with α1 = α2 ≡ α, and we analyze the implications of a small
perturbation in which the planner symmetrically changes N1

E and N
2
E (i.e., dN

1
E = dN2

E).
Given the symmetry of the setting, the market solution is also symmetric: N1mkt

E = N2mkt
E

and c1mkt
D = c2mkt

D . We can thus simplify the constraint set above and represent it with
the following 2× 2 system:

2 ·R (α, cD, λ) =
η (2 + k)

γφ

NE = Ne (α, cD, λ) > 0

with the symmetric solutions for cD and λ thus determined given a symmetric entry
level NE. For the symmetric setting, the market solution obtains and satisfies these
constraints when NE = N1mkt

E = N2mkt
E ≡ Ñmkt

E and thus cD = c1mkt
D = c2mkt

D ≡ c̃mktD with

λ = λ̃
mkt
.19 ,20 We note further that for this symmetric setting the market equilibrium

relationship (42) with tes = 0 imposed for s ∈ {1, 2} simplifies and takes the form

λ̃
mkt

=
γφ

(c̃mktD )2+k
,

which is exactly the same relationship reported in (21) for the one-sector model.
We find that, at the market solution, the Jacobian determinant for this 2× 2 system

is given as

|J̃ | ≡ 2

(
∂R

∂cD

∂NE

∂λ
− ∂R

∂λ

∂NE

∂cD

)
|NE=Ñmkt

E

= −2(α− λ · cD)(α + λkcD)λkck+2
D |NE=Ñmkt

E
< 0,

19We use a tilde (~) as necessary to distinguish definitions relating to (undistorted) market equilibrium
outcome values in the symmetric setting (first exercise) from those in the one-sector model. Similarly,
for the potentially asymmetric setting (second exercise) considered below, we use a hat (^).
20For the symmetric two-sector model, we can show that in the market equilibrium the level of entry

into any one sector is half the level of entry in the market equilibrium of the one-sector model: Ñmkt
E =

(1/2)Nmkt
E .
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where the inequality follows from (43) and our assumption that Ñmkt
E > 0, c̃mktD > 0 and

λ̃
mkt

> 0. Referring to (23), we note that |J̃ | takes the form |J̃ | = 2|J |. Given |J̃ | < 0 at
the market solution, we may apply the implicit function theorem.
By the implicit function theorem, the derivatives that emerge from this comparative

statics exercise exist for NE suffi ciently close to Ñmkt
E . Evaluating at the market solution,

we find that the derivatives take the following form:

dcD
dNE

|NE=Ñmkt
E

=
1

|J |
(
kφγ + αck+1

D

)( cD
φγ

)2

|NE=Ñmkt
E

< 0

and
dλ

dNE

|NE=Ñmkt
E

=
−1

|J |
(
kφγ + αck+1

D

)( 1

φγck+1
D

)
|NE=Ñmkt

E
> 0,

where we use that |J̃ | = 2|J | when |J | is evaluated at the market solution for the (sym-
metric) two-sector model. Referring to (24) and (25), we see that the derivatives for our
first exercise take exactly the same form as they did in the one-sector model.
We can now capture the impact on the planner’s objective of a small symmetric change

in the level of entry, starting at the market equilibrium, as follows:

d
∑

s∈{1,2} u (αs, c
s
D, λ)

dNE

|NE=Ñmkt
E

= 2

(
∂u

∂cD

dcD
dNE

+
∂u

∂λ

dλ

dNE

)
|NE=Ñmkt

E
,

which takes a re-scaled (doubled) form of (22) from the one-sector model. We have already
established that the derivatives dcD

dNE
and dλ

dNE
take exactly the same form as they did in

the one-sector model; furthermore, we note that the utility partial derivatives ∂u
∂cD

and ∂u
∂λ

are also defined exactly as in the one-sector model and thus again take the form given in
(26) and (27).
With these observations in place, we see that the symmetric version of the two-sector

model has similar features as the one-sector model. Most importantly, just as the market
solution for the one-sector model satisfies the first-order condition for the corresponding
planner’s problem, the market solution for the two-sector model satisfies the first-order
condition for the planner’s problem that corresponds to that model. We summarize this
point in the following proposition:

Proposition 2 Suppose α1 = α2 and that the planner is restricted to consider only sym-
metric changes in entry levels in both sectors: dN1

E = dN2
E ≡ dNE. In this restricted

policy space, the symmetric market level of entry satisfies the planner’s first-order condi-
tion, just as in the one-sector model.
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Second exercise: We turn now to our second exercise. Here, we allow that α1 may
differ from α2. For this potentially asymmetric setting, we allow the planner to consider
a small change in N1

E and N
2
E where the change is calibrated so that λ is unaltered (i.e.,

dN1
E and dN

2
E are such that dλ = 0). As mentioned above, this exercise shares qualitative

features with our analysis in Bagwell and Lee (2020) of the welfare effects of an increase
in entry into the differentiated sector, where the other sector is an outside good sector. In
both cases, the marginal utility of income remains fixed, and so variety-level consumption
is not impacted by changes in the marginal utility of income.
We assume that the (undistorted) market equilibrium represented by the vector (N1mkt

E ,

N2mkt
E , c1mkt

D , c2mkt
D , λ̂

mkt
) exists satisfying (54), (55) and the Free Entry condition (42)

with t1e = t2e = 0 imposed, and at which for s ∈ {1, 2} we have N smkt
E > 0, csmktD > 0

and λ̂
mkt

> 0. Starting at this solution, the planner imposes a small perturbation to this
system, where we now allow the planner to change both N1

E and N
2
E (i.e., dN

1
E 6= 0 and

dN2
E 6= 0) slightly and in a manner that leaves λ unchanged (i.e., dλ = 0). For a given

increase in N1
E, we thus must determine the corresponding change in N

2
E that serves to

preserve the value of λ.
We consider the following 3× 3 system:

∑
s∈{1,2}

R (αs, c
s
D, λ) =

η (2 + k)

γφ
(56)

Ne

(
α1, c

1
D, λ

)
−N1

E = 0 (57)

Ne

(
α2, c

2
D, λ

)
− F (N1

E) = 0, (58)

where the function F is specified so that, at the market equilibrium, F (N1
E) = N2

E and

F ′(N1
E) = −

∂R(α1,c1D,λ)

∂cD

∂Ne(α2,c2D,λ)

∂cD
∂R(α2,c2D,λ)

∂cD

∂Ne(α1,c1D,λ)

∂cD

. (59)

Starting at the market equilibrium, the function F describes the path of the exogenous
change in N2

E that accompanies a small change in N
1
E. We note that the market solution

satisfies the constraints given by (56)-(58) when N1
E = N1mkt

E and thus csD = csmktD with

λ = λ̂
mkt
.

We note further that the market equilibrium relationship (42) with tes = 0 imposed for
s ∈ {1, 2} simplifies and takes the form

λ̂
mkt

=
γφ

(csmktD )2+k
≡ γφ

(ĉmktD )2+k
. (60)
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Thus, even though α1 6= α2 is allowed, in the (undistorted) market equilibrium, the cost
cutoff level is in fact independent of the sector: c1mkt

D = c2mkt
D ≡ ĉmktD . Using (38) and

(40), it follows in turn that, at the market equilibrium, the number of available varieties
and the number of entrants are each symmetric across sectors, even though α1 6= α2 is
allowed. Thus, at the market equilibrium, differences in demand as captured by α1 6= α2

do not translate into different market entry patterns across sectors.21

We next consider the Jacobian Ĵ for the 3 × 3 system described in (56)-(58) when
evaluated at the market equilibrium. We are not able to sign this determinant in general,
but we can verify that it is non-zero for a tractable special case. In particular, at the
market solution when α1 = α2 ≡ α, we find that the determinant is strictly negative:

|Ĵ |α1=α2≡α = −2(α− λ̂
mkt
· ĉmktD )(α + k(α− λ̂

mkt
· ĉmktD ))k(ĉmktD )2 < 0, (61)

where the inequality follows from (43) and our assumption that N smkt
E > 0, csmktD =

ĉmktD > 0 and λ̂
mkt

> 0. Given |Ĵ | < 0 at the market solution when α1 = α2, we know that
|Ĵ | < 0 is sure to hold at the market solution when the level of asymmetry (i.e., |α2−α1|)
is suffi ciently small. In order to apply the implicit function theorem, we thus assume
henceforth that the level of asymmetry is suffi ciently small. We emphasize, however, that
what we require as a general matter is simply that the determinant of the Jacobian is
non-zero when evaluated at the market solution.
Totally differentiating the system described in (56)-(58) with respect to N1

E, using
F (N1mkt

E ) = N2mkt
E and (59), and evaluating at the market solution, we find that

dλ

dN1
E

|N1
E=N1mkt

E
= 0

dc1
D

dN1
E

|N1
E=N1mkt

E
=

1
∂Ne(α1,c1D,λ)

∂cD

|N1
E=N1mkt

E

dc2
D

dN1
E

|N1
E=N1mkt

E
= −

∂R(α1,c1D,λ)

∂cD
∂R(α2,c2D,λ)

∂cD

∂Ne(α1,c1D,λ)

∂cD

|N1
E=N1mkt

E
.

Thus, the perturbation captured by our specification in (59) indeed ensures that λ is
unchanged.

21Recall that the average markup, µ, is symmetric across sectors, even away from the (undistorted)
market equilibrium (i.e., even when the Free Entry condition is not imposed). Observe also that, at

the market equilibrium, ps =
(
2k+1
2(k+1)

)
ĉmktD and cs =

(
k
k+1

)
ĉmktD ; hence, while α1 6= α2 is allowed, the

average price, cost and price-cost difference in the market equilibrium are nevertheless independent of
the sector. These three values, however, vary across sectors with the cutoff cost level csD, when entry
levels are moved away from market equilibrium levels as determined by the Free Entry condition. See
also footnote 15.
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Using (16), (17) and imposing the market equilibrium condition (60), we find that, for
s ∈ {1, 2},

∂Ne(αs, c
s
D, λ)

∂cD
|N1

E=N1mkt
E

= −2(k + 1)(cM)k

ηφ
[αs + k(αs −

γφ

(ĉmktD )k+1
)] < 0

∂R(αs, c
s
D, λ)

∂cD
= − 1

γφ
[αs +

kγφ

(ĉmktD )k+1
] < 0,

where αs − γφ
(ĉmktD )k+1

= αs − λ̂
mkt
· ĉmktD > 0 by N smkt

E > 0. Referring to (59), we can
now verify that our second experiment entails an increase in entry into sector 1 that
is accompanied by a decrease in entry into sector 2, where the entry adjustments are
balanced to keep λ unaltered.
Gathering our findings, we may further report that

dc1
D

dN1
E

|N1
E=N1mkt

E
= − ηφ

2(k + 1)(cM)k
1

[α1 + k(α1 − γφ
(ĉmktD )k+1

)]
< 0 (62)

where α1 − γφ
(ĉmktD )k+1

= α1 − λ̂
mkt
· ĉmktD > 0 by N1mkt

E > 0 and

dc2
D

dN1
E

|N1
E=N1mkt

E
=

ηφ

2(k + 1)(cM)k

[α1 + kγφ
(ĉmktD )k+1

]

[α2 + kγφ
(ĉmktD )k+1

][α1 + k(α1 − γφ
(ĉmktD )k+1

)]
> 0. (63)

Hence, the reallocation of entry from sector 2 to sector 1 results in a lower cost cutoff
level in sector 1 and a higher cost cutoff level in sector 2.
To examine the impact of the described shift in entry levels on consumer welfare,

we must first determine the impact of a change in the cutoff cost level for a sector on
consumer welfare. Using (13) and imposing the market solution condition (60), we find
that

∂u(αs, c
s
D, λ)

∂cD
|N1

E=N1mkt
E

=
−γφ

2η(2 + k)(ĉmktD )3+2k

(
αs(ĉ

mkt
D )1+k + 2(1 + k)γϕ

)
< 0, (64)

which parallels the finding (26) for the one-sector model. As expected, an increase in the
cost cutoff for a given sector lowers the consumer utility enjoyed in that sector.
We are now prepared to analyze the impact of the proposed shift in entry levels for

consumer welfare. Specifically, we seek to evaluate

d

dN1
E

∑
s∈{1,2}

u(αs, c
s
D, λ)|N1

E=N1mkt
E

=
∑

s∈{1,2}

∂u(αs, c
s
D, λ)

∂cD
· dc

s
D

dN1
E

|N1
E=N1mkt

E
.
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Using (62), (63) and (64), we calculate

∑
s∈{1,2}

∂u(αs, c
s
D, λ)

∂cD
· dc

s
D

dN1
E

|N1
E=N1mkt

E
=
η(γφ)3(ĉmktD )1+k(2 + k)(α2 − α1)

D
, (65)

where

D ≡ [4η(2 + k)(k + 1)γ(cM)k(ĉmktD )3+2k][α1 + k(α1 −
γφ

(ĉmktD )k+1
][α2(ĉmktD )1+k + kγφ] > 0,

with the inequality again following since α1− γφ
(ĉmktD )2+k

= α1− λ̂
mkt
· ĉmktD > 0 by N1mkt

E > 0.
Notice that the described shift in entry levels has no effect on welfare in the special

case of a symmetric setting, where α1 = α2. As we can see from (59), in that case, the
exercise involves an increase in N1

E that induces an equal-sized decrease in N
2
E. When the

setting is symmetric with α1 = α2, it is intuitive that, starting at the market solution,
a small zero-sum reallocation of entry from one sector to the other would have no first-
order welfare effect. As (65) confirms, however, when α1 6= α2, the planner can gain
from modifying the market solution and expanding the level of entry into one market
at the cost of less entry in the other, where the adjustment is made so as to keep λ

constant. Interestingly, the market provides too much entry into the sector s for which
αs is highest,which is suggestive of a business-stealing externality interpretation.22

We summarize with the following proposition:

Proposition 3 Allow α1 6= α2 with |α2 − α1| suffi ciently small so that (61) is sure to
hold. Suppose that the planner is restricted to consider only a small increase in entry into
sector 1 that is accompanied by a decrease in entry into sector 2 so as to keep the value
for λ fixed: dN1

E > 0 > dN2
E such that dλ = 0. In this restricted policy space, starting

at the market equilibrium, additional entry in sector 1 raises (lowers) (does not change)
welfare U if and only if α1 < α2 (α1 > α2) (α1 = α2).

To understand the forces involved, suppose that α1 > α2 with the difference small.23

Starting at the market equilibrium, consider a small increase in entry into sector 1 with

22If we instead assume α1 = α2 and allow different fixed entry costs for the two sectors, with f1e 6= f2e ,
then we can similarly establish that the market provides excessive entry into the sector with the lowest
fixed cost of entry and thus also the sector with the lowest markup. In support of the latter point, we
note that if one sector had a lower fixed cost (as captured in (42) by a larger entry subsidy), then that
sector would have a lower critical cost cutoff in the market equilibrium; hence, by (37) and csD = pmaxs ,
that sector also would have a lower markup at the market equilibrium.
23The assumption of small differences is only used as a suffi cient condition for the invertibility of the

3× 3 system, so that the implicit function theorem may be applied. It is not otherwise used in our proof.
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a corresponding reduction in entry into sector 2 that keeps the value for λ fixed. Due
to α1 > α2, we can show that this perturbation induces (i) a marginal utility gain from
a lower value of c1

D that is large in magnitude relative to the induced marginal utility
loss from a higher value of c2

D, but also (ii) a reduction in c
1
D that is small in magnitude

relative to the induced increase in c2
D. When α1 > α2, we then show that the latter

effect dominates, so that the overall level of utility falls. In this way, even though average
markups do not vary across sectors, when there are demand differences across sectors
(α1 6= α2), the interactions in the utility function between the corresponding demand
parameters and the cutoff cost levels can support welfare improving interventions.
The finding in Proposition 3 shares qualitative features with that in Bagwell and Lee

(2020) of the welfare effects of an increase in entry into the differentiated sector, where the
other sector is an outside-good sector. Bagwell and Lee (2020) show that entry into the
differentiated sector is too great if the value for α in that sector exceeds a threshold value.24

In Bagwell and Lee (2020), the presence of an outside good ensures that the level of entry
does not impact the marginal utility of consumption; similarly, in the second experiment
considered here, an increase of the level of entry into one sector is offset by a decrease in
the level of the entry into the other sector, so as to ensure that the marginal utility of
income λ is unaltered. Thus, in both cases, the marginal utility of income remains fixed,
and so variety-level consumption is not impacted by changes in the marginal utility of
income. In addition, and as Proposition 3 confirms, the market provides excessive entry
into the sector s with the highest value for αs, a finding which is broadly analogous to
Bagwell and Lee’s (2020) finding regarding excessive entry into the differentiated sector
when the value for α in that sector exceeds a threshold value
To summarize, we consider two kinds of comparative statics exercises in this section.

In the first exercise, we consider a symmetric setting in which α1 = α2 and analyze the
implications of a small perturbation in which the planner symmetrically changes N1

E and
N2
E (i.e., dN

1
E = dN2

E). Just as in our analysis of the one-sector model, the symmetric
change in entry levels induces a change in λ and impacts variety-level consumption through
this channel. Indeed, and as Proposition 2 confirms, when the two-sector model has a
symmetric setting and is subjected to a symmetric change in sectoral entry levels, the
results are exactly similar to those in the one-sector model. In our second exercise, we
allow that α1 may differ from α2. For this setting, we consider a small perturbation in
which the planner increases the level of entry into sector 1 while simultaneously decreasing
the level of entry in sector 2 in such a manner as to ensure that λ is unaltered (i.e., dN1

E and
dN2

E are such that dλ = 0). We show that such an intervention can improve welfare when

24Specifically, in Bagwell and Lee (2020), the market generates excessive entry into the differentiated
sector when α > 2 · cmD , where cmD is the cutoff cost level for surviving varieties as determined in the
market equilibrium.
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demand differences are present across sectors (α1 6= α2) even though average markups
are symmetric across sectors. We also argue that this exercise shares qualitative features
with the analysis in Bagwell and Lee (2020) of the welfare effects of an increase in entry
into the differentiated sector, where the other sector is an outside good sector.

5 Two-sectorMOmodel without outside good: Repli-
cation of planner’s problem using entry policies tse

We show in this section that market equilibrium outcomes generated from the planner’s
direct choice of entry levels (N1

E, N
2
E) alternatively can be induced by an appropriate

choice of entry policies (t1e, t
2
e) by a government.

To make our argument, we compare two problems. The first problem is the planner’s
problem, which we define above in (53)-(55). In this problem, the planner directly chooses
(N1

E, N
2
E) to maximize aggregate utility

∑
s∈{1,2} u (αs, c

s
D, λ) subject to constraints, where

the constraints determine (c1
D, c

2
D, λ) and thus aggregate utility for a given (N1

E, N
2
E).

Below, it will be convenient to represent a candidate choice (N1
E, N

2
E) for the planner and

the corresponding values for (c1
D, c

2
D, λ) as (N1∗∗

E , N2∗∗
E ) and (c1∗∗

D , c2∗∗
D , λ∗∗), respectively.

Thus, given (N1
E, N

2
E) = (N1∗∗

E , N2∗∗
E ), the corresponding values (c1∗∗

D , c2∗∗
D , λ∗∗) satisfy

(54) and (55).
The second problem is the government’s problem. The government also seeks to max-

imize aggregate utility
∑

s∈{1,2} u (αs, c
s
D, λ), but the government selects entry policies

(t1e, t
2
e), with the constraints then given by (44)-(48) and corresponding to the market al-

locations as described in Section 3.4. Below, it will be convenient to represent a candidate
choice (t1e, t

2
e) for the government and the corresponding values for (c

1
D, c

2
D, λ) as (t1∗e , t

2∗
e )

and (c1∗
D , c

2∗
D , λ

∗), respectively.
Formally, we can represent the constraints for the government’s problem as

∑
s∈{1,2}

2 (k + 1) γ (cM)k

η

(αs − λ · csD)

λ · (csD)k+1

(
λ (csD)k+2 (cM)−k

2γ (2 + k)
+ tse

)
= 1 (66)

csD = (λ)−
1

2+k (fe − tse)
1

2+k γ
1

2+k φ̃
1

2+k for s ∈ {1, 2} (67)

where φ̃ = 2 (k + 1) (k + 2) (cM)k. Using (45) and the Pareto distribution, we can rewrite
(48) as (66). Note that (67) is a restatement of (44). Thus, given (t1e, t

2
e) = (t1∗e , t

2∗
e ), the

corresponding values (c1∗
D , c

2∗
D , λ

∗) satisfy (66) and (67). Finally, the corresponding values
for (N1∗

E , N
2∗
E ) then may be determined using (45).

We now show that any allocation of (c1
D, c

2
D, λ) generated by a planner’s choice over

(N1
E, N

2
E) can be replicated by the government choice of (t1e, t

2
e), and vice versa. A
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maintained assumption is that the policies selected by the planner and government are
such that the level of entry in each sector is strictly positive: (N1∗∗

E , N2∗∗
E ) > 0 and

(N1∗
E , N

2∗
E ) > 0. To state our finding in the simplest possible way, we also assume that

for each problem, given the relevant policies, the market equilibrium values for (c1
D, c

2
D, λ)

are uniquely determined by the corresponding constraints.

Proposition 4 The proposition has two parts:
(i). Fix a choice (N1∗∗

E , N2∗∗
E ) for the planner and let (c1∗∗

D , c2∗∗
D , λ∗∗) be correspondingly

determined by (54) and (55). Then there exists a choice (t1∗e , t
2∗
e ) for the government that

correspondingly determines (c1∗
D , c

2∗
D , λ

∗) by (66) and (67) and then (N1∗
E , N

2∗
E ) by (45)

where (c1∗
D , c

2∗
D , λ

∗) = (c1∗∗
D , c2∗∗

D , λ∗∗) and (N1∗
E , N

2∗
E ) = (N1∗∗

E , N2∗∗
E ).

(ii). Fix a choice (t1∗e , t
2∗
e ) for the government that correspondingly determines (c1∗

D , c
2∗
D , λ

∗)

by (66) and (67) and then (N1∗
E , N

2∗
E ) by (45). Then there exists a choice (N1∗∗

E , N2∗∗
E )

for the planner that correspondingly determines (c1∗∗
D , c2∗∗

D , λ∗∗) by (54) and (55) where
(c1∗∗
D , c2∗∗

D , λ∗∗) = (c1∗
D , c

2∗
D , λ

∗) and (N1∗∗
E , N2∗∗

E ) = (N1∗
E , N

2∗
E ) .

Proof. The proof of Proposition 4 is found in the Appendix.

6 Conclusion

We consider the effi ciency of market entry in single- and two-sector versions of the Melitz-
Ottavanio (MO) model, where differently from the MO model our two-sector model does
not involve an outside good. For the one-sector MO model, we show that the market
level of entry achieves a (local) welfare maximum. For a two-sector MO model without
an outside good, we show that the welfare results are exactly similar to those in the one-
sector model when the two sectors are symmetric. When the two sectors are asymmetric
and the level of asymmetry is suffi ciently small, we identify a perturbation indicating
a sense in which the market level of entry into the “high-demand” sector is excessive.
This intersectoral misallocation occurs at the market equilibrium even though endogenous
average markups are equal across sectors. We also show how the outcomes induced by the
planner’s direct choice of entry levels alternatively can be induced through the appropriate
choice of entry tax/subsidy policies.
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7 Appendix

Proof of Proposition 1: As described in the text, we may define the functions cD(NE)

and λ(NE) as the solutions to (18) and (19), where given (23) we can be assured that
solutions exist for NE suffi ciently near Nmkt

E . At the market solution, dcD
dNE

and dλ
dNE

are
determined by following system:

dR (α, cD, λ)

dNE

|NE=Nmkt
E

=
∂R

∂cD

dcD
dNE

+
∂R

∂λ

dλ

dNE

|NE=Nmkt
E

= 0

dNe (α, cD, λ)

dNE

|NE=Nmkt
E

=
∂Ne

∂cD

dcD
dNE

+
∂Ne

∂λ

dλ

dNE

|NE=Nmkt
E

= 1.

We present solutions for dcD
dNE

and dλ
dNE

at the market equilibrium above in (24) and (25).
By using (21) to substitute for λ in |J | as characterized in (23), we can express the
solutions alternatively as

dcD
dNE

|NE=Nmkt
E

= − (cD)1+k (cM)−k ηφ

2k (1 + k)
(

(cD)1+k α− γφ
) |NE=Nmkt

E
< 0 (68)

dλ

dNE

|NE=Nmkt
E

=
(cM)−k γηφ2

2 (cD)2 k (1 + k)
(

(cD)1+k α− γφ
) |NE=Nmkt

E
> 0 (69)

where
(
cmktD

)1+k
α− γφ =

(
cmktD

)1+k
[α− λmkt · cmktD ] > 0 by Nmkt

E > 0.
Arguing similarly, at the market equilibrium, d2cD

(dNE)2
and d2λ

(dNE)2
are determined by

following system:

∂2R (cD (NE) , λ (NE))

(∂NE)2
|NE=Nmkt

E
= 0 (70)

∂2Ne (cD (NE) , λ (NE))

(∂NE)2
|NE=Nmkt

E
= 0. (71)

Taking the derivatives in (70) and (71) and then plugging in the market-solution values
of dcD

dNE
, dλ
dNE

and λ as given in (68), (69) and (21), we find25:

d2cD

(dNE)2 |NE=Nmkt
E

=
(cD)1+2k (cM)−2k γη2φ3

4k (1 + k)
(

(cD)1+k α− γφ
)2 (

(cD)1+k α + kγφ
) |NE=Nmkt

E

25These expressions are generated using Mathematica. Details are available from the authors.
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d2λ

(dNE)2 |NE=Nmkt
E

=
(cD)−2+k (cM)−2k γη2φ3

(
(cD)1+k (2 + k + k2)α− 2k2γφ

)
4k2 (1 + k)2

(
(cD)1+k α− γφ

)2 (
(cD)1+k α + kγφ

) |NE=Nmkt
E
.

Finally, using the solutions above, we compute the second order condition for objective
function evaluation at the market equilibrium as:

d2u (α, cD (NE) , λ (NE))

(dNE)2 |NE=Nmkt
E

= −
(cM)−2k γηφ3

(
(cD)1+k α + 2 (1 + k) γφ

)
8 (cD)2 k (1 + k) (2 + k)

(
(cD)1+k α− γφ

)(
(cD)1+k α + kγφ

) |NE=Nmkt
E

< 0

since as shown above α − λmkt · cmktD > 0 implies
(
cmktD

)1+k
α − γφ > 0. Therefore, Nmkt

E

is a local maximizer.�

Proof of Proposition 4: To prove part (i), let us first use (16) and (17) and rewrite
planner’s constraints (54) and (55) as

∑
s∈{1,2}

2 (k + 1) γ (cM)k

η

(αs − λ∗∗ · cs∗∗D )

λ∗∗ · (cs∗∗D )k+1

(
λ∗∗ (cs∗∗D )k+2 (cM)−k k

2 (1 + k) (2 + k) γ
+ fe

)
= 1 (72)

N s∗∗
E =

2 (k + 1) γ (cM)k

η

(αs − λ∗∗ · cs∗∗D )

λ∗∗ · (cs∗∗D )k+1
(73)

where (c1∗∗
D , c2∗∗

D , λ∗∗) is determined by (72) and (73) under given (N1∗∗
E , N2∗∗

E ). Turning
now to the government’s problem, we let the government pick ts∗e for s ∈ {1, 2} such that

fe = ts∗e +
(λ∗∗) (cs∗∗D )k+2

γφ̃
. (74)

If we plug (74) into (72) and simplify, then we obtain

∑
s∈{1,2}

2 (k + 1) γ (cM)k

η

(αs − λ∗∗ · cs∗∗D )

λ∗∗ · (cs∗∗D )k+1

[
λ∗∗ (cs∗∗D )k+2 (cM)−k

2γ (k + 2)
+ ts∗e

]
= 1. (75)

For given (t1∗e , t
2∗
e ), (c1∗

D , c
2∗
D , λ

∗) are determined by (66) and (67) while (N1∗
E , N

2∗
E ) is deter-

mined by (45). Comparing (74) with (67) and likewise (75) with (66), we conclude that
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(c1∗
D , c

2∗
D , λ

∗) = (c1∗∗
D , c2∗∗

D , λ∗∗). Finally, given this equivalence and comparing (73) with
(45), we conclude that (N1∗

E , N
2∗
E ) = (N1∗∗

E , N2∗∗
E ) .

The proof of part (ii) is similar and therefore omitted. �
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