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Abstract

We consider a model in which governments negotiate a trade agreement while
uncertain about future political pressures. After the agreement is formed and before
applying its import tariff, a government privately observes its political economy pa-
rameter. This parameter reflects the political pressure faced by the government and
determines the welfare weight that the government attaches to the profitability of its
import-competing sector. In this private-information setting, we find conditions un-
der which an optimal trade agreement for governments takes the form of a tariff cap: a
tariff function that specifies the maximum permissible tariff and grants the importing
government flexibility to apply any tariff at or below the cap. This characterization
offers an interpretation of WTO rules, under which member governments negotiate
tariff bindings (i.e., caps). Our theory also provides an interpretation of “binding
overhang” as an implication of an optimally designed trade agreement.

Keywords: Tariff caps, Trade agreements, Political economy, Private information, Mech-
anism design without transfers.

1 Introduction

Governments negotiate trade agreements in order to obtain higher political economic
welfare than they would obtain in the absence of an agreement. An import tariff im-
posed by the government of a large country lowers the world price at which foreign
exporters sell; thus, when one country applies a higher import tariff, a negative interna-
tional (“terms-of-trade”) externality is generated for its trading partner. As a consequence
of this externality, and for a wide range of specifications of government preferences, the
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tariffs that governments set under non-cooperative play are higher than would be effi-
cient, where efficiency is measured relative to the preferences of governments. The cen-
tral purpose of a trade agreement is then to facilitate reciprocal reductions in tariffs, so
that governments can enjoy higher political economic welfare.1

The negotiation of a trade agreement, however, is not a simple undertaking. A first
complication is that negotiations occur in the presence of uncertainty. In particular, at
the time of negotiation, governments may be uncertain about the respective political
pressures that they will face in the future. Negotiating governments are then uncertain
about the tariffs that will be efficient in the future. If political pressures were publicly
observable, then governments might address this complication by negotiating a state-
contingent agreement, whereby they apply efficient tariffs once political pressures are
realized. Broad movements in political pressures may be publicly observable; however,
at the time that tariffs are applied, each government is likely to possess some private in-
formation about the extent of the pressures that it faces. A second complication, then, is
that governments possess private information when tariffs are applied.

The presence of private information introduces an incentive compatibility problem.
Suppose that each government is privately informed as to the magnitude of a political
economy parameter in its welfare function, where the parameter determines the welfare
weight that the government attaches to the profitability of its import-competing sector.
For example, the magnitude of this parameter could reflect the intensity of any of several
forms of political pressure that might be applied by firms in this sector. Similarly, the
size of the parameter could also reflect the level of political support (lobbying contribu-
tions, participation in fund-raising events, etc.) from firms in this sector. If governments
attempt to negotiate an agreement that is fully efficient (i.e., first best), then they must
ensure that a government applies a higher tariff when its political economy parameter is
larger. An incentive compatibility problem then arises, because the higher tariff will also
be attractive to a government with a political economy parameter of moderate size. This
follows since, for any given political economy parameter, a government’s preferred (i.e.,
Nash) tariff is above its efficient tariff, as a consequence of the aformentioned interna-
tional externality.

We can imagine that governments might address the incentive compatibility problem
with sidepayments (i.e., monetary transfers). If governments design a trade agreement
in which sidepayments are used, and if transfers can be made between governments in
a lump sum fashion, then governments could implement fully efficient tariffs.2 A gov-

1For further development of this argument, see Bagwell and Staiger (1999).
2See, for example, Bagwell and Staiger (2005).
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ernment that faces large pressures would find a high tariff so appealing that it would be
willing to pay more in exchange for such a tariff than would a government with moder-
ate pressures. Sidepayments do not figure prominently in the rules of the WTO, however,
and explicit monetary transfers are almost never used in WTO dispute resolutions.

This discussion motivates the following question: If governments are uncertain of
their future political economic preferences at the time that they negotiate a trade agree-
ment but understand that they respectively will be privately informed as to their prefer-
ences when tariffs are applied, and if monetary transfers are infeasible, then what form
does an optimal trade agreement take? The purpose of this paper is to answer this ques-
tion. We focus on a static model with two countries, in which each government privately
observes the political economy parameter that determines the welfare weight that it at-
taches to its import-competing sector. A trade agreement is then an import tariff function,
which indicates how a government’s applied tariff can vary with its “type”(i.e., with the
parameter that it observes), where each government has a continuum of possible types.
We adopt a simple model of trade, in which consumers have additively separable utility
functions and firms are competitive. As we explain, this structure enables us to focus on
the optimal trade agreement for the “home”government’s tariff function, with the under-
standing that an analogous characterization applies to the tariff function of the foreign
government.3

At an intuitive level, it is clear that the choice of an optimal trade agreement must
reflect at least three considerations. First, since a higher tariff induces a negative interna-
tional externality, we may expect that an optimal trade agreement would induce applied
tariffs that are lower on average than they would be in the absence of a trade agreement.
Second, governments also may be attracted to a trade agreement that allows some flexi-
bility, so that higher tariffs can be matched with higher types, at least over some ranges.
A trade agreement that facilitates some matching of this kind may be appealing, since
the efficient tariff is increasing in the importing government’s type. Finally, governments

3To characterize the optimal trade agreement in the absence of transfers, we must be careful to construct
our model so as to shut down all means through which governments might achieve transfers. First, govern-
ments might achieve transfers using appropriate combinations of import tariffs and export subsidies. In the
WTO, export subsidies are prohibited in the Subsidies and Countervailing Measures Agreement. A grow-
ing literature addresses the wisdom of this prohibition. It is not our purpose to address this issue here; in-
stead, we consider the optimal form of a trade agreement, when export policies are unavailable. Second, we
also rule out the use of tariff-quota schemes, which represent a further means through which governments
might transfer revenue (see Feenstra and Lewis, 1991, for an analysis of optimal trade agreements with such
transfers). Finally, governments might also achieve transfers via general-equilibrium (”Lerner symmetry”)
effects, under which a domestic import tariff reduction alters relative prices and thereby expands domestic
export volume. To eliminate this channel for revenue transfers, we employ a (”partial-equilibrium”) model
in which a numeraire good enters utility in a quasi-linear fashion and is freely traded across countries so as
to achieve balanced trade.
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may also wish to consider the variance of a tariff function. In the model that we analyze,
the importing government’s welfare function is concave in the tariff, but the exporting
government’s welfare function may be convex in the import tariff. The optimal trade
agreement may thus be expected to depend on relative curvature measures across the
two government welfare functions.

Our main finding is that conditions exist under which an optimal trade agreement
takes the form of a tariff cap. A tariff cap is a tariff function that specifies a maximum
permissible tariff and grants the importing government flexibility to apply any tariff at
or below the cap. Intuitively, a cap serves to lower the average tariff, while still allowing
a government flexibility when it comes to tariffs below the cap. When the importing
government has a low type, its preferred (Nash) tariff is below the cap. The government
then applies a tariff that falls strictly below the cap. When the importing government has
a higher type, however, the cap binds; thus, for all types above a certain threshold, the
government’s import tariff function exhibits bunching at the cap. The conditions that we
provide relate to the curvature properties of the government welfare functions and the
slope of the density function for types. For the domestic import good, the conditions are
more likely to be satisfied when the convexity of the foreign welfare function is not too
great relative to the concavity of the domestic government welfare function, and when
the density function is non-decreasing.

An important benefit of our main finding is that the conditions are developed for a
general model, so that we can confirm whether or not the conditions hold in a range
of specific examples. To illustrate, we consider a simple example in which the utility
function is quadratic and supply functions are linear. In this linear-quadratic example, the
conditions underlying our characterization are satisfied if the density is non-decreasing.
We also show that these conditions can hold even for densities that decrease over part or
all of the support, and for convex and concave densities, provided that the density does
not fall too quickly. Similarly, we consider an example with log utility and endowments
(inelastic supply) and show that the conditions underlying our characterization are sure
to hold if the density is non-decreasing.

Our main finding provides an interpretation of a key design feature of the GATT/
WTO trade agreement, whereby governments negotiate “tariff bindings”or “bound tariff
levels”rather than precise tariff levels.4 A bound tariff is simply a tariff cap. While a tariff
cap is a very simple tariff function, our analysis suggests that an optimal trade agreement

4GATT Article II.1(a) states “each contracting party shall accord to the commerce of the other contracting parties
treatment no less favourable than that provided for in the appropriate Part of the appropriate Schedule annexed to
this Agreement.”In GATT parlance, a contracting party is a country and the “treatment”provided for in the
schedule of concessions is the bound tariff.
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among privately informed governments takes this form. Our analysis also provides an
interpretation of a practice that is sometimes observed, whereby a WTO member gov-
ernment applies a tariff that falls below its negotiated bound tariff. This phenomenon is
sometimes called “binding overhang”or “water in the tariffs.”Our analysis indicates con-
ditions under which binding overhang is expected to occur with positive probability in
an optimal trade agreement.

Our work relates to two main literatures. The first literature addresses the economic
theory of trade agreements. Much of this literature considers the purpose and design of
the WTO. Only a few papers, however, have addressed the economics of tariff caps (i.e.,
bindings) and the associated possibility of binding overhang. Indeed, after surveying
work on the economics of tariff bindings, the WTO Report 2009 (World Trade Organiza-
tion, 2009) concludes that there is “relatively little theoretical work on this topic....The impli-
cations of random tariff regimes...remain largely unexplored.”Recent empirical work suggests
that binding overhang is quantitatively important and that the pattern of binding over-
hang across products and countries is somewhat uneven.5 The existence of binding over-
hang can also be a source of tension in negotiations, since an exporting government may
question the value of an importing government’s offer to reduce its bound tariff when
binding overhang is present. Empirical findings and negotiation practice thus provide
additional motivation for theoretical analyses of tariff bindings and binding overhang.

In the small and recent theory literature that addresses tariff bindings and binding
overhang, our work is most closely related to a pair of papers that considers trade agree-
ments among privately informed governments. Bagwell and Staiger (2005) utilitize the
linear-quadratic model of trade and assume that a government has a continuum of pos-
sible types. One of their findings is that the optimal tariff cap offers greater expected
joint government welfare than is possible under a tariff agreement that specifies a pre-
cise (rigid) tariff that is applied by all types. They do not characterize the optimal trade
agreement among the full set of incentive compatible tariff functions. Bagwell (2009) also
utilizes the linear-quadratic model. In a model with two possible types, one of his find-
ings is that an optimal trade agreement does not take the form of a tariff cap. Both papers
establish that binding overhang occurs with positive probability when the optimal tariff
cap is used. Relative to these papers, our contribution is to provide general conditions for
a model with a continuum of types under which an optimal trade agreement takes the

5Bouet and Laborde (2008) estimate that world trade would fall by 7.7% if applied tariffs of all major
economies were raised to bound rates. The findings of Bchir, Jean, and Laborde (2006) suggest that binding
overhang is often greater in developing countries and for agricultural sectors, but important exceptions
exist. Their results (p. 229) “confirm the importance and unevenness of binding overhang.”
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form of a tariff cap.6

Tariff bindings and binding overhang have also received some attention in other mod-
eling frameworks. In a model with contracting costs, Horn, Maggi, and Staiger (2010)
establish that binding overhang can occur. Maggi and Rodriguez-Clare (2007) analyze a
model in which applied tariffs are set at bound levels in equilibrium, and yet the poten-
tial to apply a tariff below the bound level induces ex post lobbying that mitigates an ex
ante problem of over-investment. Finally, Bagwell and Sykes (2004) suppose that import-
competing firms are risk averse and informally argue that governments may set applied
tariffs below bound levels, in order to maintain “policy space”in which to adjust tariffs
and maintain local-price stability.

Our paper is also related to a second literature, which characterizes the value of rules
and caps when agents possess private information. McAfee and McMillan (1992) provide
conditions under which an identical-bidding rule represents the optimal form of collusion
among bidders, while Athey, Bagwell, and Sanchirico (2004), Athey and Bagwell (2008)
and Bagwell and Lee (2010) show that optimal collusion among privately informed firms
may entail rigid pricing or advertising rules. Recent work on dynamic consistency and
private information identifies settings in which caps are optimal. Athey, Atkeson, and
Kehoe (2005) provide conditions under which optimal monetary policy for a privately in-
formed official is characterized by a cap. Amador, Werning, and Angeletos (2006) develop
a Lagrangian method and provide a sufficient and necessary condition under which a cap
is optimal in a consumption-savings model. Finally, research on delegation in organiza-
tions, started by Holmström (1984), has shown that caps may also represent an optimal
form of delegation, when a principal faces an informed but biased agent.7 A common fea-
ture of all of the above papers is the finding that an optimal mechanism among privately
informed agents with no or limited transfers may entail a rigid rule or cap.

Our main finding that an optimal trade agreement between privately informed gov-
ernments is described by a tariff cap is clearly related to this second literature. Our model,

6We may think of the two type model as a limit of a continuum-type model as the density goes to zero
for all types other than the selected two types. Viewed from this perspective, Bagwell’s (2009) finding is
consistent with our finding here that a tariff cap is optimal when the density satisfies restrictions which
ensure that it does not fall too quickly.

7Most of the delegation literature has focused on quadratic preferences and one-dimensional action to be
delegated, and has restricted the delegation set to be an interval; recent work has relaxed these assumptions
(see Alonso and Matouschek, 2008, and references therein). We note as well that our solution method
is quite different from the approach commonly used in this literature, and that the sufficient conditions
identified by Alonso and Matouschek for “interval delegation” when preferences take a more general form
are not satisfied in our trade-policy model, since (i) the agent’s welfare, which in our case would correspond
to the home government’s, cannot generally be written in the form assumed in that paper and (ii) the
international (terms-of-trade) externality ensures that Nash tariffs are above efficient tariffs, so that a one-
sided “bias” is always present. We thank Ilya Segal for directing our attention to this last paper.
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however, has a novel payoff structure: payoffs are separable across actions, and one
player’s welfare may be convex in the other player’s action. Our solution strategy fol-
lows Amador et al. (2006); however, the Lagrangian method they propose is not directly
applicable in our set up because, under reasonable assumptions regarding preferences
and technology, the resulting objective function in our optimization problem may fail to
be concave. In spite of this, we extend the methods and obtain sufficient conditions for
optimality by explicitly constructing Lagrange multipliers that make the resulting La-
grangian concave and by showing that the tariff cap allocation satisfies the first order
conditions for the maximization of this Lagrangian.

The paper is organized as follows. In Section 2, we present our basic model of trade
and government welfare. In Section 3, we describe the problem that an optimal trade
agreement must solve, and we characterize the optimal trade agreement in the family of
agreements that can be described by a tariff cap. Section 4 contains a variational analysis
of the linear-quadratic model. Our work in this section suggests that the optimal tariff
cap represents a plausible candidate for an optimal trade agreement, under appropriate
conditions on the slope of the density and the curvature of the government welfare func-
tions. Returning to the general model, we establish in Section 5 conditions under which
an optimal trade agreement takes the form of a tariff cap. In Section 6, we illustrate and
interpret this result in the specific context of the linear-quadratic example. Section 7 con-
cludes. Remaining proofs are collected in the Appendix.

2 The Model

We consider a simple model of trade in three goods between two countries. All goods
are demanded and produced in both countries. Supply functions differ across countries,
however, and international trade arises for this reason. The home country imports good
x from the foreign country and exports good y to the foreign country. A numeraire good
n is also traded between the two countries.

In both countries, residents share a common utility function which is quasilinear and
additively separable across the three products, with the numeraire good entering the util-
ity function in a linear fashion. Within any given country, the consumer demand for good
i, where i = x, y, thus depends on the local price of good i relative to that of the numeraire
good. Each good is supplied under conditions of perfect competition, so that, within any
given country, the production of good i, where i = x, y, also depends on the local price
of good i relative to that of the numeraire good. Finally, the numeraire good is produced
in each country under constant returns to scale and is freely traded across countries so as
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to ensure that trade is balanced. For simplicity, we normalize the price of the numeraire
good to unity.8

In this setting, which is common in the literature, market outcomes for good x are
independent of those for good y. To reduce notational clutter, we may thus put good y to
the side and focus on good x. After characterizing trade policies for the home country’s
import good, we may translate our findings and characterize trade policies for the foreign
country’s import good.

Let us then put good y to the side and represent the utility function for consumers at
home by

u(cx) + cn,

where cx and cn represent the respective consumption levels of good x and the numeraire
good, respectively. Similarly, the utility function abroad is given by

u(cx
?) + cn

? ,

where the subscript ? denotes the respective foreign values. The function u is strictly
increasing, strictly concave and thrice continuously differentiable. Notice that we assume
that home and foreign consumers enjoy symmetric utilities for good x. This assumption
simplifies our presentation but is not essential.

Let p denote the home relative price of good x with respect to good n. Similarly, p?
is the foreign relative price of good x with respect to good n. Let the supply functions
of good x at home and abroad be given by Q(p) and Q?(p?) respectively. For prices that
elicit strictly positive supply, the functions Q(p) and Q?(p?) are assumed to be strictly in-
creasing and twice continuously differentiable. We also assume that the supply functions
differ in the following way: Q(p) < Q?(p) for any p such that there is strictly positive
world supply. One implication of the above is that good x will be imported under free
trade by the home country.9

We use z to denote the volume of international trade of good x. Home consumers’
optimization delivers an inverse demand function for imports:

u′(Q(p) + z) = p⇒ p = P(z), (1)

8We may develop the model further by specifying the underlying factor market. We assume that the
numeraire good is produced from labor alone, where one unit of labor produces one unit of the numeraire
good. In each country, the supply of labor is infinitely elastic at a unitary wage, and good i = x, y may
be produced from labor alone subject to diminishing returns. For further details, see Bagwell and Staiger
(2001, 2005).

9The symmetric assumption for good y ensures that good y is exported under free trade by the home
country.
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where P′(z) < 0 follows from our assumptions. Likewise, foreign consumers’ optimiza-
tion delivers an inverse supply function for exports:

u′(Q?(p?)− z) = p? ⇒ p? = P?(z), (2)

where P′∗(z) > 0 is implied by our assumptions.
We abstract from export policies and assume that each country has available a specific

(i.e., per-unit) import tariff. If the government of the home country selects the import
tariff τ, then the implied import volume, z(τ), is the value of z which satisfies τ = P(z)−
P∗(z). Under our assumptions, it is straightforward to show that z′(τ) < 0. Of course, we
may equivalently think of choosing the trade volume z, with an import tariff, τ(z), then
implied by the relationship τ = P(z) − P?(z), where under our assumptions τ′(z) < 0
follows. We use both formulations below, but we find it convenient to begin with the
latter formulation.

For a given trade volume z, the associated producer surplus (profit) functions at home
and abroad are defined as

Π(z) =
∫ P(z)

p
Q( p̃)dp̃ , Π?(z) =

∫ P?(z)

p∗

Q?( p̃)dp̃,

where p ≥ 0 is the highest price p at which Q(p) = 0 and p∗ ≥ 0 is likewise the highest
price p∗ at which Q∗(p∗) = 0. We note that Π(z) denotes the producer surplus enjoyed by
the import-competing industry in the home country, while Π?(z) represents the producer
surplus for the exporting industry in the foreign country.

We are now prepared to define government welfare functions. The welfare of the
foreign government is constructed as the sum of the consumer surplus and the producer
surplus in the foreign country:

V(z) = u(Q?(P?(z))− z)− P?(z)(Q?(P?(z))− z) + Π?(z). (3)

The welfare of the policy maker at home is constructed in a similar fashion, with two
important differences. The first difference is that the welfare of the domestic government
includes tariff revenue, and the second difference is that the domestic government wel-
fare function includes a political economy parameter reflecting the greater weight that
the government may give to the interests of import-competing firms.10. Formally, we

10Recall that we put good y to the side. The welfare function of the foreign government includes tariff
revenue and a political economy parameter for import-competing firms, when we consider good y.
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represent the welfare of the domestic government as

W(z|γ) = u(Q(P(z)) + z)− P(z)(Q(P(z)) + z) + (P(z)− P?(z))z + γΠ(z), or

W(z|γ) = B(z) + γΠ(z) (4)

where we let
B(z) ≡ u(Q(P(z)) + z)− P(z)Q(P(z))− P?(z)z (5)

and where γ ∈ Γ ≡ [γ, γ̄] is the domestic political economy parameter.
We pause now to interpret the political economy parameter, γ. When γ = 1, the

home government maximizes national economic welfare. A value for γ above 1 captures
the desire of the politician to transfer resources to the domestic production sector facing
import competition. A government may place special weight on the interests of import-
competing firms, if such firms have organized lobbies and offer political contributions
to the government, as in the model of Grossman and Helpman (1995). More generally,
Baldwin (1987) argues that a range of political economy forces can be captured using the
specification that we adopt here. Bagwell and Staiger (2001, 2005), for example, analyze a
model of this kind, under the assumptions that supply and demand functions are linear.11

Feenstra and Lewis (1991) also use this specification of political pressure in their analysis
of optimal trade agreements when transfers are permitted.

As explained above, different specifications for the import tariff lead to different levels
in the equilibrium volume of international trade, where the relationship between τ and z
is one to one. For convenience, we use z as the policy variable and report the following
proposition:

Proposition 1. The following holds for all z > 0: V′(z) > 0; Π′(z) < 0; and B′′(z) + Π′′(z) +
V′′(z) < 0.

Proof. See Appendix A.

A higher value of trade volume is delivered if the import tariff applied by the home gov-
ernment is lower. With P′∗(z) > 0 as shown in Appendix A, the foreign country enjoys
a terms-of-trade gain. This explains why the welfare of the foreign country strictly in-
creases as trade volume rises. Of course, with P′(z) < 0 as confirmed in Appendix A, a
higher trade volume depresses the price of the imported good in the home market, lead-
ing to a strict decrease in the profit of the import-competing industry. Finally, with γ = 1,

11It is also plausible that a government attaches additional political weight to the well-being of its export
interests. The approach that we adopt here has the virture of simplifying the problem somewhat, since
along any given trade channel only one political economy parameter is in play.
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the joint welfare of the home and foreign government corresponds to global real income,
which is maximized at the volume of trade that corresponds to free trade. The third part
of the proposition above simply confirms that global real income is strictly concave in the
underlying volume of trade.

In the following lemma, we show that, if some further structure is imposed on the
production and utility functions, then additional curvature properties hold:

Lemma 1. Suppose that Q′′ ≤ 0 and that u′′′ ≥ 0, then V′′(z) > 0, B′′(z) < 0 and Π′′(z) > 0
for all z > 0.

Proof. See Appendix B.

Under relatively mild conditions, therefore, foreign welfare is strictly convex in the un-
derlying trade volume. By contrast, the domestic government welfare function includes
strictly concave and convex components. This lemma foreshadows a challenge we face
below, when we define a program and seek to identify multipliers for which the associ-
ated Lagrangian is strictly concave.12

3 The Incentives Problem

We assume that the home and foreign governments negotiate a trade agreement before
realizing their respective political economy parameters. Thus, at the time of negotiation,
governments are uncertain about their future preferences. As before, we focus on good
x while keeping in mind that a symmetric analysis applies to good y. For good x, the
political economy parameter, γ, is embedded in the home government welfare function
and has support Γ ≡ [γ, γ̄]. We represent the c.d.f as F(γ) and denote the density as
f (γ) which we assume to be strictly positive over the support.13 Once the value of γ is
realized, the home government is privately informed of this value.

In this private-information setting, while governments may seek an agreement that as-
signs different tariffs (i.e., trade volumes) for different realizations of γ, they may choose
only among incentive-compatible tariff functions. In their negotiation, therefore, gov-
ernments select a tariff function, τ(γ), that maximizes their expected joint welfare over

12This challenge was not present in Feenstra and Lewis (1991) because the presence of a transfer allows
them to obtain a foreign welfare function that is concave with respect to trade volume.

13Symmetrically, for good y, we may assume that the foreign government privately observes the real-
ization of its political economy parameter, γ∗, where γ∗ defines the weight that the foreign government
attaches to the profit of its import-competing firms and where γ∗ and γ are independently and identically
distributed.
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the set of incentive-compatible tariff functions. Equivalently, we may think of govern-
ments as selecting the trade volume function, z(γ), that maximizes expected joint welfare
among those trade volume functions that are incentive compatible. In fact, as we argue
just below, it is also equivalent to think of governments as choosing the profit level for the
domestic import-competing industry, where the selected profit level is allowed to vary
with the political economy parameter, provided that it does so in an incentive-compatible
way. In this section, we adopt the latter formulation, define the associated program and
consider trade agreements that can be implemented with a cap on the maximum tariff.

3.1 The Problem

In this subsection, we define the program of interest. Recall from Proposition 1 that
Π′(z) < 0. We may thus denote by Π−1 the inverse function of Π. Let z(π) = Π−1(π),
b(π) ≡ B(Π−1(π)) and v(π) ≡ V(Π−1(π)). Let the set of feasible π be [0, Π(0)] ≡ [0, π̄].
Building on our work above, we can easily establish that z′(π) < 0 and v′(π) < 0 for
all π ∈ [0, π̄] (i.e., for all z > 0). That is, a higher value for domestic profit corresponds
to a lower trade volume and thus a higher import tariff; consequently, the welfare of the
foreign government strictly falls when the domestic profit is increased. We can also show
that, if we strengthen our assumptions in a mild way, so that Q′′ ≤ 0 and u′′′ ≥ 0, then
z′′(π) > 0 and v′′(π) > 0 for all π ∈ [0, π̄]. Thus, after the change of variables, it remains
reasonable to expect that the foreign welfare function may be strictly convex.

A trade agreement is a function π(γ) that determines the profit allocated to the do-
mestic producers as a function of γ. We are looking for a trade agreement that is incentive
compatible and efficient. That is, we seek the trade agreement that solves the following
problem:

(P) : max
π(γ)

{∫
γ∈Γ

(
γπ(γ) + b(π(γ)) + v(π(γ))

)
dF(γ)

}
(Obj)

subject to:
γ ∈ arg max

γ′∈Γ

{
γπ(γ′) + b(π(γ′))

}
(IC)

Once the optimal profit function is determined, we can easily back out the associated
tariff function. We find it convenient to write the problem in terms of profit, since the
profit function enters linearly in some terms in the objective and the incentive constraint.

Before analyzing this problem, we note four important features. First, we note that
the problem includes terms that are linear, perhaps strictly concave and possibly strictly
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convex in π(γ).14 Second, the set of permissible profit functions is determined by the
incentive constraint. As we will see, the feasible set of profit functions includes discontin-
uous functions, and any feasible profit function must be monotonic (weakly increasing).
Third, the statement of the problem reflects our assumption that governments do not
have available sidepayments (monetary transfers). The absence of sidepayments makes
the analysis of the problem more challenging.15 Fourth, we assume that the governments
seek a trade agreement that maximizes the sum of their expected welfares. The solution
generates a particular outcome on the efficiency frontier when only tariffs are allowed,
and it is important to keep in mind that an analogous solution applies for good y, where
the foreign government has private information about the weight that it attaches to its
import-competing industry.16

It is useful at this point to define the profits that would be achieved in a “flexible” or
Nash allocation, where the home government is not subject to any agreement. To this
end, we define the profit under flexibility, π f (γ), as follows:

π f (γ) = arg max
π∈[0,π̄]

{γπ + b(π)} (6)

We assume that the above maximization has an interior maximum for all γ ∈ Γ. This
means that, at π = π f (γ), we have γ + b′(π) = 0 and b′′(π) < 0. It follows then that
π′f (γ) = −1/b′′(π f (γ)) > 0. Associated with this flexible profit allocation is a flexible or
Nash tariff allocation, τf (γ), which is also strictly increasing.

3.2 Optimality Within the Set of Tariff Caps

Suppose that we were constrained to look for an optimal trade agreement within the set
of tariff functions that are described by a tariff cap. When the home government agrees
to a tariff cap, it may not apply a tariff in excess of the cap but it has complete flexibility
to choose any tariff that is at or below the cap. Given that domestic profit, π, is strictly

14We have already noted that it is reaonable to expect that v(π) may be strictly convex. We assume
below that b(π) is strictly concave for profit levels that are associated with “flexible” outcomes, and we
later require in Assumption 1 that b(π) is strictly concave for all feasible π.

15As discussed in the Introduction, and as Bagwell and Staiger (2005) confirm, a fully efficient (“first-
best”) outcome can be implemented if sidepayments are allowed.

16If the instrument space is expanded so that governments can make sidepayments during their negoti-
ation, and thus before they obtain private information, then all efficient payoffs can be achieved by solving
program (P) and specifying an appropritate ex ante transfer. Grossman and Helpman (1995) make a similar
point, in their analysis of “trade talks.”
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increasing in the tariff, we may define a tariff cap allocation to be

πc(γ) =

π f (γ) , for γ < γc

π f (γ
c) , for γ ≥ γc

Notice that a tariff cap allocation satisfies (IC).
Under a tariff cap allocation, the objective function, (Obj), becomes:

O(γc) ≡
∫ γc

γ
(γπ f (γ) + b(π f (γ)) + v(π f (γ)))dF(γ)

+ (1− F(γc))
(

π f (γ
c)E[γ|γ > γc] + b(π f (γ

c)) + v(π f (γ
c)
)

The first derivative of O, after some algebra, is:

1
π′f (γc)

O′(γc)

1− F(γc)
= v′(π f (γ

c))− γc + E[γ|γ > γc] (7)

where we use that b′(π f (γ
c)) = −γc which follows from (6).

The following definition will be helpful in the characterization that follows:

Definition 1. Let γp ∈ arg maxγ∈Γ O(γ).

We will assume in what follows that γp is unique and in the interior of Γ. Note that given
that limγc→γ̄{v′(π f (γ

c))− γc + E[γ|γ > γc]} = v′(π f (γ̄)) < 0, a sufficient condition for
an interior maximizer is that v′(π f (γ))− γ + Eγ ≥ 0.

The following lemma will prove useful:

Lemma 2. The value of γp is such that v′(π f (γ
p))− γp + E[γ|γ > γp] = 0.

Proof. The stated result follows from the assumption that γp is in the interior of Γ, and
hence, O′(γp) = 0 in an optimum.

4 Variational Analysis in a Linear-Quadratic Example

To solve the problem (P), our approach is to define a relaxed problem and use the La-
grangian techniques developed by Amador et al. (2006) This approach is particularly ef-
fective for problems in which a conjectured solution is already identified. To motivate
and explain our conjecture, we thus now pause and briefly consider the linear-quadratic
example studied by Bagwell and Staiger (2005). For this example, we employ simple

14



variational techniques to propose conditions under which tariff functions with certain
properties cannot be optimal. In particular, when such conditions hold, our findings in
this section suggest the optimal tariff cap as a reasonable conjecture for the solution to the
problem (P). Accordingly, our discussion here provides an intuitive foundation for some
of the assumptions that we make in subsequent sections for our general analysis.17

Suppose that the utility function for good x takes a simple quadratic form, u(c) =

c− (c)2/2. The resulting demand function for good x in each country is then linear with
1− p units demanded when the local relative price is p. Let the supply function for good
x in the home country be Q(p) = p/2 and in the foreign country be Q∗(p∗) = p∗. For
this linear-quadratic example, if we set domestic import demand equal to foreign export
supply and use p = p∗ + τ, then we may express the market clearing prices as func-
tions of tariffs.18 We may then compute consumer surplus, profit and tariff revenue, and
thereby determine that domestic government welfare may be represented as the follow-
ing quadratic function of the tariff:

9 + 8γ

98
+

8γ− 5
49

τ − 2(17− 2γ)

49
τ2.

Assuming (as we do below) that γ is not too large, the home government welfare function
is strictly concave in the tariff. Similary, foreign government welfare takes the following
form:

25
98
− 3τ

49
+

9τ2

49
.

Notice that foreign welfare is strictly convex in the tariff. These expressions can all be
written as functions of the trade volume, z, using the fact that z(τ) = (1− 6τ)/7 in this
model. For the purposes of the present section, we find it more convenient to work with
the tariff as the independent variable.19

The flexible or Nash tariff, τf (γ), is the tariff that maximizes domestic government
welfare, given the realized value of the political economy parameter, γ. For a given value
of γ, the fully efficient (i.e., first best) tariff, τe(γ), is the tariff that maximizes the sum
of home and foreign welfare. For γ ∈ [1, 7/4), the flexible and efficient tariff functions

17For a more general analysis of the linear quadratic case in the context of the context of the delegation
literature, see Alonso and Matouschek (2008).

18The local relative price in the home country is 4(1 + τ)/7 while the local relative price in the foreign
country is (4 − 3τ)/7. These and other relationships are derived in more detail in Bagwell and Staiger
(2005).

19In Section 6, we represent the linear-quadratic model while treating the import volume z as the inde-
pendent variable. This representation matches that taken elsewhere in the paper and faciliates the interpre-
tation of our general assumptions in terms of the linear-quadratic model.
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satisfy

τf (γ) =
8γ− 5

4(17− 2γ)
>

4(γ− 1)
25− 4γ

= τe(γ).

Thus, for political economy parameters in this range, the flexible tariff is higher than ef-
ficient. Intuitively, when contemplating a higher tariff, the domestic government doesn’t
internalize the negative terms-of-trade externality that is experienced by the foreign gov-
ernment. When γ = 7/4, the domestic political economy parameter is so high that the
efficient tariff eliminates all trade. The flexible and efficient tariffs then agree: τf (7/4) =
1/6 = τe(7/4). While the flexible tariff function is incentive compatible, the efficient tariff
function is not.

As previously noted, the tariffs that are applied under a tariff cap are incentive com-
patible. The optimal tariff cap is the tariff cap that maximizes the expected sum of home
and foreign government welfare. Assuming γ = 1 < γ < 7/4 and that the expected
value of γ exceeds 5/4, Bagwell and Staiger (2005) show that an optimal tariff cap τ for
this model satisfies τ ∈ (τf (γ), τe(γ)) and is the efficient tariff for the average type among
those types that apply the tariff cap. In the particular case of a uniform distribution with
γ ∈ [3/2, 7/4), the assumptions of their model hold, γp = 3γ− 7/2, and the optimal tar-
iff cap is τ = (γ− 11/8)/(4− γ). The optimal tariff cap is illustrated in Figure 1. Notice
that the tariff cap is lower than efficient for the highest type and higher than efficient for
lower types. Notice as well that the lowest types apply tariffs below the cap; thus, the
optimal tariff cap leads to binding overhang.

τ

γ1 7/4γp

τf (γ)

τe(γ)

Figure 1: Optimal tariff cap.

τ

γγ2γ1γ0 γA

τf (γ)

τ1

τ2

Figure 2: Variation 1.

τ

γγ1γ0 γ2

τf (γ)

τ2

τ1

Figure 3: Variation 2.

The tariffs that are applied under an optimal tariff cap represent just one of many in-
centive compatible tariff functions. Any incentive compatible tariff function τ(γ) must be
weakly increasing.20 In addition, if an incentive compatible tariff function τ(γ) is contin-
uous and strictly increasing over an interval, then τ(γ) = τf (γ) on that interval. But an
incentive compatible tariff function may also involve steps and points of discontinuity. If

20This is a standard finding, which as we discuss in the next section holds as well for the general version
of our model.
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an incentive compatible tariff function is discontinuous at some breakpoint γb and jumps
upward at this point from a lower step to a higher step, then the lower step is strictly
below τf (γb) while the higher step is strictly above τf (γb). Intuitively, in the absence of
sidepayments, any jump from a lower to a higher step must take this form in order to
ensure that the breakpoint type is indifferent.

To begin our exploration of candidate solutions, we consider any incentive compatible
tariff function for which there exists an interval [γ0, γA] and values γ1 and γ2 such that
γ ≤ γ0 < γ1 < γ2 < γA ≤ γ and

τ(γ) =


τ1 ≤ τf (γ0) , for γ ∈ [γ0, γ1)

τ2 = τf (γ2) , for γ ∈ (γ1, γ2]

τf (γ) , for γ ∈ [γ2, γA].

Note that incentive compatibility requires that type γ1 is indifferent. This implies that
τ1 < τf (γ1) < τ2.

As illustrated in Figure 2, over the interval [γ0, γA], this tariff function starts with a
low step and then jumps at γ1 up to a high step. The tariff function “steps into flexibility,”
in that it hits the flexible tariff function, τf (γ), at γ2, and rides along the flexible tariff
function thereafter for all types up to γA. We make no assumptions about the tariffs for
types below γ0 or above γA. A special case of interest arises when τ1 = τf (γ0). In that
case, the tariff function under consideration injects a step into the flexible tariff function.

For a given tariff function of the described kind, we now consider a simple variation
in which γ0, γA and τ1 are held fixed while γ1 is lowered. As shown in Figure 2, when
the breakpoint type is reduced in this way, incentive compatibility requires that the top
step be lowered; thus, a reduction in γ1 results in a lower value for τ2 and thus a lower
value for γ2.

Does this variation raise or lower expected joint welfare? Figure 2 suggests that three
different effects warrant consideration. First, for γ ∈ (γ1, γ2), the variation results in
a lower tariff, corresponding to the reduction in τ2. Since τf (γ) > τe(γ), the variation
results in more efficient tariffs for γ ∈ (γ1, γ2). Second, for types just below the origi-
nal value for γ1, the variation results in a significantly higher tariff, since these types no
longer apply τ1 but instead apply (the lowered) τ2. The variation thus results in a signifi-
cantly less efficient tariffs for types just below γ1. Finally, we can see from Figure 2 that the
variation also alters the “risk” properties of the tariff distribution: relative to the baseline
of the flexible tariff function, the variation results in a less variable distribution of applied
tariffs.

17



Looking at Figure 2, we may anticipate that this variation is more likely to raise ex-
pected joint welfare if (i) the density f (γ) increases sufficiently over [γ0, γ2], so that the
improved efficiency of tariffs for higher types in this interval contributes more to expected
joint welfare than does the significantly diminished efficiency of tariffs for types just be-
low γ1, and (ii) the foreign welfare function is not too convex in the tariff relative to the
concavity of the home welfare function (which is embedded in the slope of the flexible
tariff function), so that the reduced variability of the tariff is a source of joint welfare gain.

To examine the variation in a baseline case, we suppose that F(γ) is uniform. With this
assumption, we pin down the first effect just mentioned, since f (γ) is then constant. Our
linear-quadratic model has already fixed the relative curvature properties of the foreign
and home government welfare functions. In Appendix C, we show that a slight reduction
in γ1 leads to an increase in expected joint welfare in the amount

27(γ2 − γ1)
2

(17− 2γ1)2(17− 2γ2)(γ− γ)
> 0.

Thus, in the case of a uniform distribution, it is not optimal to step into flexibility, as it
would be better to “shrink” the step and extend the region of flexibility.

The result applies as well in the special case in which τ1 = τf (γ0). For this special
case, we may also consider a related experiment in which we start with the flexible tariff
function and then consider introducing a small step of the described kind. In this exper-
iment, we start with γ0 = γ1 = γ2 and then increase γ1 slightly so as to engineer a tiny
step. The expression just derived indicates that the first-order effect of this change on
joint welfare is zero. As we argue in Appendix C, the second-order effect is zero as well;
however, the third-order effect on expected joint welfare of introducing a small step into
the flexible tariff function is negative.

For the linear-quadratic model, if the distribution function is uniform, we conclude
that it cannot be optimal to step into flexibility, and relatedly it cannot be optimal to in-
ject a step into the flexible tariff function. Furthermore, based on the intuition presented
above, we expect that these results would hold as well if the density were increasing
rather than constant. Similar findings should also arise in other models of trade, pro-
vided that the foreign welfare function is not too convex relative to the concavity of home
government welfare function.

We turn now to a second candidate solution. In particular, we consider any incentive
compatible tariff function for which there exists an interval [γ0, γ2] and a value γ1 such
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that γ ≤ γ0 < γ1 < γ2 ≤ γ and

τ(γ) =


τf (γ) , for γ ≤ γ0

τ1 = τf (γ0) , for γ ∈ [γ0, γ1)

τ2 , for γ ∈ (γ1, γ2].

Incentive compatibility again requires that type γ1 is indifferent, which implies that τ1 <

τf (γ1) < τ2.
Figure 3 illustrates this candidate. This tariff function is initially flexible and then

“steps out of flexibility,” in that it departs from the flexible tariff function with a flat step
and then jumps at γ1 up to a high step. We make no assumptions about the tariffs for
types above γ2.

For this tariff function candidate, we consider a simple variation in which γ2 and
τ2 are held fixed while γ1 is raised. As shown in Figure 3, when the breakpoint type
is increased in this way, incentive compatibility requires that the bottom step be raised;
thus, an increase in γ1 results in a higher value for τ1 and thus a higher value for γ0.

To anticipate the implications of this variation for expected joint welfare, we look to
Figure 3. There are again three effects. First, for γ ∈ (γ0, γ1), the variation results in a
higher tariff, corresponding to the increase in τ1. Since τf (γ) > τe(γ), the variation results
in less efficient tariffs for γ ∈ (γ0, γ1). Second, for types just above the original value for
γ1, the variation results in a significantly lower tariff, since these types now apply (the
increased) τ1 and no longer apply τ2. The variation thus results in a significantly more
efficient tariffs for types just above γ1. Finally, the variation also results in a less variable
distribution of applied tariffs, relative to the baseline of the flexible tariff function.

We may now anticipate that this variation is more likely to raise expected joint welfare
if (i) the density f (γ) increases sufficiently over [γ0, γ2], so that the significantly improved
efficiency of tariffs for types just above γ1 contributes more to expected joint welfare than
does the diminished efficiency of tariffs for types in (γ0, γ1), and (ii) the foreign welfare
function is not too convex in the tariff relative to the concavity of the home government
welfare function, so that the reduced variability of the tariff is a source of joint welfare
gain.

We again suppose that F(γ) is uniform. In Appendix C, we show that a slight increase
in γ1 leads to an increase in expected joint welfare in the amount

27(γ1 − γ0)
2

(17− 2γ1)2(17− 2γ0)(γ− γ)
> 0.
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Thus, in the case of a uniform distribution, it is not optimal to step out of flexibility,
since expected joint welfare would be higher if the initial interval of tariff flexibility were
expanded.

For the uniform case, therefore, an optimal tariff function does not step into flexibility
nor step out of flexibility. Provided that γ < 7/4 so that τf (γ) > τe(γ), it also cannot be
optimal to use the flexible tariff function everywhere (i.e., for all γ ∈ [γ, γ]). This follows
since the optimal tariff cap is less than τe(γ) and thus less than τf (γ). Importantly, we
have not ruled out the optimal tariff cap, since in that case the tariff function remains
constant upon leaving the flexible tariff function. Other tariff functions remain as well;
for example, we have not ruled out tariff functions that utilize two tariffs only, with lower
types selecting τ1 < τf (γ) and higher types selecting τ2 > τf (γ̄). 21

In total, our analysis in this section suggests the optimal tariff cap as a plausible so-
lution candidate. The analysis also suggests that this solution may be more likely when
the density is non-decreasing and the convexity of the foreign welfare function is not too
great relative to the concavity of the home government welfare function. We now return
to the general analysis.

5 The Optimal Trade Agreement

In this section, we use the Lagrangian techniques developed by Amador et al. (2006) to
obtain sufficient conditions for the optimal tariff cap to be optimal within the set of all
feasible and incentive compatible trade agreements. We also provide assumptions under
which the sufficient conditions are satisfied. As suggested by our variational analysis in
the preceding section, these assumptions relate to the slope of the density and the extent
to which the foreign welfare function is convex in relation to the concavity of the home
government welfare function. When these assumptions hold, we thus establish that the
optimal tariff cap represents an optimal trade agreement.

5.1 The Relaxed Problem

Recall the problem (P) presented above. As usual, the incentive constraint (IC) for this
problem is equivalent to a continuum of equality constraints and a monotonicity restric-
tion on the allocation. The standard approach to solve the problem is to substitute the

21We may also consider a tariff function τ(γ) such that τ(γ) = τf (γ1) for γ ∈ [γ, γ1] and τ(γ) = τf (γ)

for γ ∈ [γ1, γ]. This specification cannot be optimal, however, since it would be more efficient to use the
flexible tariff function for all γ ∈ [γ, γ].
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equality constraints into the objective function and ignore the monotonicity constraint at
a first pass. Then, after having optimized the objective function point-wise, ironing tech-
niques can be used to resolve violations of the monotonicity restriction. However, the
absence of transfers makes this approach infeasible in our model. Instead, we proceed to
relax the problem by introducing a fake variable ω(γ) that linearly reduces the welfare
of the home government. We impose that ω(γ) ≥ 0 ∀γ ∈ Γ, so that this variable has the
economic interpretation of a wasteful punishment that could be imposed on the home
government.22

Formally, we consider the following relaxed problem:

RP : max
π(γ),ω(γ)

∫
Γ

(
γπ(γ) + b(π(γ)) + v(π(γ))−ω(γ)

)
dF(γ) (8)

subject to:

γπ(γ) + b(π(γ))−ω(γ) = max
γ′

{
γπ(γ′) + b(π(γ′))−ω(γ′)

}
, ∀γ ∈ Γ (9)

ω(γ) ≥ 0 , ∀γ ∈ Γ (10)

The following lemma guarantees that a solution to the relaxed problem (RP) above is
a solution to our original problem (P) as long as in the solution ω(γ) = 0, so that the
extra-punishment is not used to provide incentives:

Lemma 3. If (π?(γ), ω?(γ)) is a solution to the relaxed problem (RP) and ω?(γ) = 0 for all
γ ∈ Γ, then π?(γ) is a solution to the original problem (P).

Proof. The proof follows by noticing that if ω?(γ) = 0 for all γ ∈ Γ, then π?(γ) satis-
fies (IC), and thus the solution to the relaxed problem (RP) is in the constraint set of the
original problem (P).

To analyze the relaxed problem, we begin by characterizing the incentive constraints
in a more useful form. In particular, we now rewrite the incentive constraints (9) in their

22 There are other ways to obtain the sufficient conditions below that do not require the introduction
of this fake punishment. For example, it is possible to obtain a similar characterization by replacing the
equality constraints that arise from the incentive constraints with two set of weak inequalities with opposite
signs (that is, x = y can be replaced with x ≥ y and x ≤ y). The sufficiency theorem can be applied to this
case. Alternatively, we can obtain the relaxed problem by solving out for b in the objective function using
the equality constraints and then relaxing the equality constraints by changing the equality restriction to
an appropriate inequality. However, we prefer to make the introduction of w explicit as it has an economic
interpretation: resources will not be wasted in an optimal agreement.
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usual integral form:

γπ(γ) + b(π(γ))−ω(γ) =
∫ γ

γ
π(γ′)dγ′ + U (11)

where U ≡ γπ(γ)+ b(π(γ))−ω(γ) is the value to the home government with the lowest
γ. Equation (11) together with π(γ) non-decreasing (monotonicity) are equivalent to the
incentive constraint (9).23

We denote the allocation as a pair of a profit allocation together with the extra-punishment
used for the lowest-γ home government: (π(γ), ω). The relaxed problem is then to max-
imize (8) subject to (10), (11), and that π(γ) be non-decreasing. Substituting (11) into
(8) and into (10), and integrating by parts the objective function, the relaxed problem
becomes:

RP′ : max
(π,ω)∈Φ

∫
Γ

(
v(π(γ)) f (γ) + (1− F(γ))π(γ)

)
dγ + U (12)

subject to: ∫ γ

γ
π(γ′)dγ′ + U − γπ(γ)− b(π(γ)) ≤ 0 for all γ ∈ Γ (13)

and where Φ = {(π, ω)|ω ≥ 0, π : Γ→ [0, π̄] and π(γ) non-decreasing}.

5.2 The Lagrangian and Assumptions

We now define the Lagrangian for the relaxed problem (RP’). We also present two addi-
tional assumptions and provide sufficient and necessary conditions associated with the
satisfaction of these assumptions.

The Lagrangian function is defined as follows:

L(π, ω|Λ) ≡
∫

γ∈Γ

(
v(π(γ)) f (γ) + (1− F(γ))π(γ)

)
dγ + U

−
∫

γ∈Γ

(∫ γ

γ
π(γ′)dγ′ + U − γπ(γ)− b(π(γ))

)
dΛ(γ)

where the function Λ is the (cumulative) Lagrange multiplier associated with (13), where
Λ(γ) is non-decreasing. Without loss of generality we set Λ(γ̄) = 1. Integrating by parts

23See, for example, Milgrom and Segal (2002).
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the above, we have that

L(π, ω|Λ) ≡
∫

γ∈Γ

(
v(π(γ)) f (γ) + (Λ(γ)− F(γ))π(γ)

)
dγ

+
∫

γ∈Γ
(γπ(γ) + b(π(γ))) dΛ(γ) + Λ(γ)U (14)

We observe that π(γ) enters the Lagrangian as a linear term in two places. As noted pre-
viously, however, v′′(π) > 0 if Q′′(p) ≥ 0 ≥ u′′′(c), and so in reasonable circumstances
π(γ) may also enter the Lagrangian in a strictly convex fashion through the v function.
Finally, recall as well that b′′(π) < 0 for π ∈ [π f (γ), π f (γ)]. It is thus reasonable to ex-
pect that π(γ) may also enter the Lagrangian in a strictly concave manner through the b
function.

Our objective is to determine sufficient conditions for a tariff cap to be optimal. Based
on the results in Subsection 3.2 and Section 4, we let the proposed allocation be (π?, w =

0) where:

π?(γ) =

π f (γ) , for γ < γp

π f (γ
p) , for γ ≥ γp

and where γp is as in Definition 1. As expected, the proposed allocation satisfies (13) with
equality.24

The problem when trying to apply the Lagrangian Theorems in Amador et al. (2006) is
that the Lagrangian is not necessarily concave in π(γ) for γ ∈ Γ. However, we will show
that it is sufficient to construct a multiplier Λ0 that makes the Lagrangian concave, and
that delivers the proposed allocation as a maximizer. To do this, we need two additional
assumptions.

Our first assumption is as follows:

Assumption 1. The function b(π) is a concave function for π ∈ [0, π̄].

As noted above, our existing assumptions already ensure that b′′(π) < 0 for π ∈ [π f (γ), π f (γ)].
With Assumption 1, we ensure that b(π) is concave over the feasible set of π.

The Lagrangian would be concave if we were to assume that v is a concave function of
π; however, as discussed above, under reasonable circumstances v may be strictly convex.
Further, our variational analysis suggests that, if v is convex, then the key issue concerns

24To see this note that
∫ γ

γ π?(γ′)dγ′ = γπ?(γ) + b(π?(γ)) − γπ?(γ) − b(π?(γ)) for γ ≤ γp, so that
(13) is satisfied for γ ≤ γp. For γ > γp we note that the left hand side of equation (13) can be written
as
∫ γp

γ π?(γ′)dγ′ +
∫ γ

γp π?(γp)dγ′ + γπ?(γ) + b(π?(γ))− γπ?(γp)− b(π?(γp)), which using the previous
result can be shown to be equal to zero.
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how convex is v relative to the concavity of b. Before stating our second assumption, let
us thus denote by κ the following value:

Definition 2. Let κ be such that:

κ ≡ min
{

min
π∈[0,π̄]

{v′′(π) + b′′(π)

b′′(π)

}
, 1
}

Using Assumption 1, we note that κ = 1 if v is (weakly) concave and that κ falls as the
convexity of v increases relative to the concavity of b.

With this definition in place, we come now to our second assumption:

Assumption 2. The following holds:

(a) The function H as given by H(γ) ≡ κF(γ)− v′(π f (γ)) f (γ) is non-decreasing in γ for
γ ∈ [γ, γp], and

(b) The function G as given by G(γ) ≡ v′(π f (γ
p))−γ+

∫ γ̄
γ γ′ f (γ′)

1−F(γ)dγ′+(γ−γp)(1− κ)

is non-positive for all γ ∈ [γp, γ̄].

Since v′(π f (γ)) < 0, we may observe that Assumption 2(a) is more likely to hold if the
density f (γ) is non-decreasing and if the function v is (weakly) concave or at least not too
convex relative to the concavity of the function b.25 We observe as well that Assumption
2(b) is more likely to hold if κ is high.

In fact, we can go beyond these simple observations and provide a simple set of suffi-
cient conditions for Assumption 2:

Lemma 4. Suppose that f (γ) is differentiable and non-decreasing and that κ ≥ 1/2. Then,
Assumption 2 holds.

Proof. See Appendix D.

We now show that a necessary implication of Assumption 2(b) is that κ is bounded
below by a positive value (which in turn implies that v + b is concave):

Lemma 5. The value of κ is such that κ ≥ −v′(π f (γ
p)) f (γp)

1−F(γp)
> 0

25To see this, we use (6) to derive that dv′(π f (γ))/dγ = −v′′(π f (γ))/b′′(π f (γ)). Assuming that
the density function is differentiable, it then follows that H′(γ) = κ f (γ) + f (γ)v′′(π f (γ))/b′′(π f (γ)) −
v′(π f (γ)) f ′(γ).
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Proof. Note that G(γp) = 0 by Lemma 2. Given that G(γ) ≤ 0 for γ ≥ γp it must be that
G′(γp) ≤ 0. Computing this derivative we get that:

G′(γp) =
[
−γp +

∫ γ̄

γp
γ′

f (γ′)
1− F(γp)

dγ′︸ ︷︷ ︸
−v′(π f (γ

p))

] f (γp)

1− F(γp)
− κ ≤ 0

and the result of the lemma follows.

5.3 Our Approach and the Multiplier

To establish that the proposed tariff cap allocation represents an optimal trade agreement,
we use the following broad approach. First, we build on a theorem by Luenberger (1969),
page 220, so as to conclude that, if there exists a non-decreasing multiplier function, Λ0,
such that L(π, ω|Λ0) is maximized at our proposed allocation, then the proposed alloca-
tion solves the relaxed problem (RP’) and thus the original problem (P). Second, we em-
ploy additional findings in Amador et al. (2006) to establish that the proposed allocation
indeed maximizes L(π, ω|Λ0) if L(π, ω|Λ0) is concave in π, and first-order conditions
for the maximization of L(π, ω|Λ0) hold at the proposed allocation.

As this outline of our approach suggests, a key step is to identify the correct multiplier
function. A particular challenge that we face in the trade application considered here is
that the Lagrangian is not automatically concave. Thus, the multiplier must be chosen so
as to ensure that the Lagrangian satisfies first-order conditions at the proposed allocation
and that the Lagrangian is concave.

Our multiplier function Λ0 is defined as follows:

Λ0(γ) =


(1− κ)F(γ) + κ ; if γ ∈ (γp, γ̄)

F(γ)− v′(π f (γ)) f (γ) ; if γ ∈ (γ, γp]

0 ; if γ = γ

(15)

Note that Λ0(γ̄) = 1, which is consistent with our previous normalization. We now
show that Λ0(γ) is also non-decreasing for γ ∈ Γ.

Lemma 6. The proposed Lagrange multiplier, Λ0, is non-decreasing for γ ∈ Γ.

Proof. Note that for γ ∈ (γ, γp), the proposed multiplier equals F(γ)− v′(π f (γ)) f (γ) =
H(γ) + (1− κ)F(γ). This is non-decreasing for γ ∈ (γ, γp) as it is the sum of two non-
decreasing functions (by Assumption 2 and that κ ∈ [0, 1]). For γ ∈ (γp, γ̄), we have that
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the proposed multiplier is also non-decreasing as κ ∈ [0, 1]. The multiplier is continuous
except at two points. At γ = γ, the multiplier has a jump, which has a size equal to
−v′(π f (γ)) f (γ) > 0. Finally, there is a second jump at γp. At this point, the jump
is κ(1− F(γp)) + v′(π f (γ

p)) f (γp), which is non negative by Lemma 5. And thus the
proposed multiplier is non-decreasing for all γ ∈ Γ.

The multiplier function thus satisfies the basic requirement of being non-decreasing.
The remaining tasks are to verify that, when this multiplier is used, the Lagrangian is
concave and the proposed allocation satisfies the first-order conditions for maximizing
the Lagrangian.26

5.4 Main Findings

Following the general approach described above, we now confirm that, at the proposed
multiplier, the proposed allocation maximizes the Lagrangian and thus solves the prob-
lem (P).

We begin by showing that the Lagrangian evaluated at the proposed multiplier is
concave.

Lemma 7. The Lagrangian when evaluated at the proposed multiplier, L(π, ω|Λ0), is concave
for (π, ω) ∈ Φ.

Proof. The Lagrangian at the proposed multiplier is:

L(π, ω|Λ0) ≡
∫

γ∈Γ

(
v(π(γ)) f (γ) + (Λ0(γ)− F(γ))π(γ)

)
dγ

+
∫

γ∈Γ
(γπ(γ) + b(π(γ))) dΛ0(γ)

26A sketch of the method by which we identify this multiplier function may be of interest to some read-
ers. The first-order conditions for maximization of the Lagrangian with respect to π(γ) over the region of
flexibility (i.e., for γ ∈ (0, γp), where π?(γ) = π f (γ)) are satisfied only if Λ0(γ) = F(γ)− f (γ)v′(π f (γ)).
This can be seen by referring to (14) and recalling that π f (γ) maximizes γπ(γ) + b(π(γ)). The first-order
conditions over the region of pooling (i.e., for γ ≥ γp, where π?(γ) = π f (γ

p)) are more complex and re-
quire that Λ0(γ) is not too low over this range. If we specify that Λ0(γ) = κ + (1− κ)F(γ), then κ cannot be
too low, say, κ ≥ κ f oc. Under this specification, concavity of the Lagrangian holds over the region of pooling
if κ is not too high, say, κ ≤ κsoc. Finally, with Λ0(γ) = F(γ)− f (γ)v′(π f (γ)) ≡ (1− κ)F(γ) + H(γ) over
the region of flexibility, concavity of the Lagrangian holds over this region provided that κ is not too high
(just as in the pooling region) and if H(γ) is non-decreasing. The latter requirement means that κ cannot
be too low, say, κ ≥ κsoc. Our method is then to set κ = κsoc and to make assumptions which ensure that
κ ≥ κ f oc (see Assumption 2b) and that κ ≥ κsoc (see Assumption 2a).
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Exploiting the proposed multiplier, we can decompose the above into the following six
additive terms:

L(π, ω|Λ0) =
∫

γ∈Γ
(Λ0(γ)− F(γ))π(γ)dγ +

∫
γ∈Γ

γπ(γ)dΛ0(γ)

+
∫

γ∈(γ,γ̄)

(
v(π(γ)) + (1− κ)b(π(γ))

)
f (γ)dγ

+
∫

γ∈(γ,γp]
b(π(γ))d

(
κF(γ)− v′(π f (γ)) f (γ)

)
+ b(π(γ))(−v′(π f (γ))) f (γ)

+ b(π(γp))
(

κ(1− F(γp)) + v′(π f (γ
p)) f (γp)

)
Note that the first two integrands are linear functions of π, and thus their integrals are
concave in π. The third integral is concave as by the definition of κ we have that v′′(π) +

(1− κ)b′′(π) is negative for all π. By Assumption 2 we know that κF(γ)− v′(π f (γ)) f (γ)
is non-decreasing in γ ∈ (γ, γp] and thus the fourth term is concave in π. The fifth term is
concave given that v′ < 0 and Assumption 1 guarantees that b is concave. And finally, the
last term is concave, given that by Lemma 5 we have that κ(1− F(γp))+ v′(π f (γ

p)) f (γp)

is positive.

Given that Lemma 7 guarantees that the Lagrangian is concave, we can now state a
sufficiency Lemma in term of first order conditions:

Lemma 8 (Sufficiency). If the following first-order conditions in terms of Gateaux differentials27:

∂L(π?, 0; π?, 0|Λ0) = 0

∂L(π?, 0; x, y|Λ0) ≤ 0

hold for all (x, y) ∈ Φ, then the proposed allocation, (π?, 0), solves the relaxed problem (RP).

Proof. In the Appendix E.

As discussed in further detail in the Appendix, in the proof of this lemma, we build on
a theorem by Luenberger (1969), page 220, and conclude that our proposed allocation

27Given a function T : Ω→ Y, where Ω ⊂ X and X and Y are normed spaces, if for x ∈ Ω and h ∈ X the
limit

lim
α↓0

1
α
[T (x + αh)− T (x)]

exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T (x; h).
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solves the relaxed problem (RP’) and thus our original problem (P), if our proposed allo-
cation maximizes L(π, ω|Λ0). We then utilize additional findings in Amador et al. (2006)
to establish that the stated first-order conditions ensure that our proposed allocation max-
imizes L(π, ω|Λ0), given our finding in Lemma 7 that L(π, ω|Λ0) is concave.

We are now ready to state and prove our main proposition.

Proposition 2. The proposed allocation (π?, 0) solves the relaxed problem RP.

Proof. The Gateaux differential of the Lagrangian evaluated at the proposed multiplier
Λ0 is

dL(π?, 0; x, y|Λ0) =
∫ γ̄

γp

[
v′(π f (γ

p)) f (γ) + κ(1− F(γ)) + (γ− γp)(1− κ) f (γ)
]

x(γ)dγ

where (x, y) ∈ Φ. Integrating by parts the above:

dL(π?, 0; x, y|Λ0) =

=

( ∫ γ̄

γp

[
v′(π f (γ

p)) f (γ) + κ(1− F(γ)) + (γ− γp)(1− κ) f (γ)
]
dγ

)
x(γp)

+
∫ γ̄

γp

∫ γ̄

γ

[
v′(π f (γ

p)) f (γ′) + κ(1− F(γ′)) + (γ′ − γp)(1− κ) f (γ′)
]
dγ′dx(γ)

Now, using that
∫ γ̄

γ (1− F(γ′))dγ′ =
∫ γ̄

γ (γ′ − γ) f (γ′)dγ′, we have that:

∫ γ̄

γ

[
v′(π f (γ

p)) f (γ′) + κ(1− F(γ′)) + (γ′ − γp)(1− κ) f (γ′)
]
dγ′

=
∫ γ̄

γ

[
v′(π f (γ

p)) f (γ′) + (γ′ − γ) f (γ′) + (γ− γp)(1− κ) f (γ′)
]
dγ′

= (1− F(γ))
[
v′(π f (γ

p))− γ +
∫ γp

γ
γ′

f (γ′)
1− F(γ)

dγ′ + (γ− γp)(1− κ)
]

= (1− F(γ))G(γ)

Note that evaluated at γ = γp the above expression equals zero, given Lemma 2. Even
more, by Assumption 2, G(γ) ≤ 0 for γ ≥ γp and thus te expression above is always
negative for γ ≥ γp. And thus, we have that dL(π?, 0; x, y|Λ0) ≤ 0. Finally note that at
the proposed allocation dx = dπ? = 0 for γ > γp and thus dL(π?, 0; π?, 0|Λ0) = 0. That
is, the conditions of Lemma 8 hold and (π?, 0) solves the relaxed problem.

Recalling that the proposed allocation corresponds to the optimal tariff cap, we may thus
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now conclude that, under Assumptions 1 and 2, the optimal tariff cap represents an opti-
mal trade agreement.

6 The Linear-Quadratic Example

To confirm the value of Proposition 2, we return to the linear-quadratic example studied
by Bagwell and Staiger (2005) and considered in Section 4. We confirm for this example
that Assumptions 1 and 2 hold, if the density is differentiable and non-decreasing. Thus,
provided the density satisfies these conditions, an optimal trade agreement is represented
as an optimal tariff cap. We provide additional findings for the case of a uniform distri-
bution. Finally, we establish as well that an optimal trade agreement takes the form of an
optimal tariff cap, under a condition on the density function that allows for decreasing
density functions.

To begin, we recall from Section 4 that, in the linear-quadratic example, Q(p) = p/2,
Q?(p) = p, and u(c) = c− c2/2. The political shocks are distributed over [γ, γ̄] where 1 ≤
γ < γ̄ < 7/4. Note as well that in this example a tariff higher than 1/6 is prohibitive.28

When trade volume z is treated as the independent variable, we find that P(z) =
2
3(1− z), P?(z) = 1

2(1 + z), Π(z) = (1− z)2/9, Π?(z) = (1 + z)2/8, V(z) = 1
4(1 + z2)

and B(z) = 1
18(1+ 7z− 17z2). Letting π denote domestic profits as before, we can rewrite

these functions in terms of π:

b(π) =
1
2
(−1 + 9

√
π − 17π)

v(π) =
1
4
(2− 6

√
π + 9π)

Inspecting the above, it follows that Assumption 1 holds. Further, the definition of κ

implies that κ = 2/3. Using Lemma 4, we thus conclude that Assumption 2 holds for
any differentiable and non-decreasing density, f (γ). Thus, if f (γ) is differentiable and
non-decreasing, then an optimal trade agreement is represented by the optimal tariff cap.

An interesting special case is that the density is uniform. The value of γp is then
γp = −7/2 + 3γ̄. One can also show that

H(γ) =
2
3

(
7/8− γ

γ̄− γ

)
+

1
3

γ

γ̄− γ

which is increasing in γ as required. Finally, G(γ) = − 1
12(7 + 2γ− 6γ̄) = −1

6(γ− γp),

28A government with a political pressure γ higher than or equal to 7/4 prefers a prohibitive tariff.
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which is non-positive for γ ∈ [γp, γ̄] as required. So for this special case, we can easily
confirm directly that Assumption 2 holds.

For the special case of a uniform distribution, we can also confirm that the tariff asso-
ciated with γp is:

τ̄ = P(Π−1(π f (γ
p)))− P?(Π−1(π f (γ

p))) =
1
6
− 7(7− 4γ̄)

24(4− γ̄)
.

Recalling that a tariff of 1/6 is prohibitive, we see that the optimal tariff cap allows for
positive trade volume since γ̄ < 7/4. The optimal tariff cap binds for higher types (i.e.,
for γ ≥ γp), while lower types apply their flexible (Nash) tariffs and thus exhibit binding
overhang. A partial intuition is that, for the very highest types, the flexible tariff exceeds
the efficient tariff for any type (i.e., for γ near γ̄, τf (γ) > τe(γ̄)). It cannot be optimal to
provide flexibility to the very highest types, since it would be more efficient to cap their
tariff at the maximal efficient tariff, τe(γ̄).29

Continuing with the uniform distribution, we consider next the agreement as γ̄ ap-
proaches 7/4. In the limit, the highest level of pressure is sufficiently high that the effi-
cient tariff leads to a trade volume of zero. The flexible and efficient tariffs agree at the
limit, since there is then no trade volume with which to impose a terms-of-trade exter-
nality; in other words, τf (7/4) = τe(7/4) = 1/6. Of course, as discussed in Section 4
and as depicted in Figure 1, for all γ < 7/4, τf (γ) > τe(γ). The findings above indicate
that, as γ̄ approaches 7/4, we have that γp approaches γ̄, and so τ̄ approaches 1/6. Thus,
when the distribution function is uniform and the highest level of support approaches the
limiting case in which zero trade volume is efficient, the optimal trade agreement entails
full flexibility for all types! In this limiting case, governments with private information
are unable to design a trade agreement that improves upon the non-cooperative (Nash)
benchmark.

The following proposition summarizes the above results:

Proposition 3. If Q(p) = p/2, Q?(p) = p, u(c) = c − c2/2, and the political shocks are
distributed over [γ, γ̄] where 1 ≤ γ < γ̄ < 7/4 according to a non-decreasing and differentiable
density, then an optimal trade agreement is represented as the optimal tariff cap. In the special case
of a uniform distribution, the optimal tariff cap is at τ̄ = 1

6 −
7(7−4γ̄)
24(4−γ̄)

, and full flexibility is thus
used for all types as γ̄ approaches 7/4.

This proposition is usefully compared with our variational analysis in Section 4, where
we also consider the linear-quadratic example, address the special case of a uniform disti-

29See Amador et al. (2006) for a related intuition.
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bution and develop a conjecture as to the optimal tariff agreement. The Lagrangian tech-
niques developed in Section 5 provide a global method of confirming conditions under
which the optimal tariff cap is an optimal trade agreement.

Finally, the linear-quadratic example also provides a tractable setting in which to
explore the possibility of non-increasing densities. For this example, we can establish
weaker sufficient conditions for Assumption 2.

Proposition 4. If Q(p) = p/2, Q?(p) = p, u(c) = c − c2/2, and the political shocks are
distributed over [γ, γ̄] where 1 ≤ γ < γ̄ < 7/4 according to a differentiable density that satisfies
f (γ) − 3v′(π f (γ)) f ′(γ) ≥ 0, then an optimal trade agreement is represented as the optimal
tariff cap.

Proof. In Appendix F.

Notice that the assumption on the density holds if the density is non-decreasing, since
v′ < 0. Proposition 4, however, includes as well densities that are decreasing over ranges
or even over the entire support, provided that the rate of decrease is not so great as to
violate the stated inequality. In particular, in the linear-quadratic example, we can derive
that v′(π f (γ)) = −1/3(7/4 − γ) and thus re-write the inequality in Proposition 4 as
f (γ) +

(7
4 − γ

)
f ′(γ) ≥ 0. This condition clearly holds even for densities that decline

over the entire support, provided that the rate of decline is sufficiently small. As well, the
condition holds for any concave density for which f (γ̄) + (7

4 − γ̄) f ′(γ̄) ≥ 0, or for any
convex density for which f (γ) + (7

4 − γ) f ′(γ) ≥ 0.30

The linear-quadratic example is tractable and offers a convenient setting with which
to illustrate our findings. An important benefit of our general analysis is that we can
employ our findings to characterize an optimal trade agreement for other examples, too.
In the Appendix G, we consider an example with log utility and endowments (inelastic
supply), where the endowment of good x in the foreign country exceeds that in the home
country. Similar results apply for this example as well.

7 Conclusion

In this paper, we characterize an optimal trade agreement among privately informed gov-
ernments. In particular, we provide conditions under which an optimal trade agreement
takes the form of an optimal tariff cap: tariffs above the cap are not permitted, but a

30To see this, note that the derivative of f (γ) + ( 7
4 − γ) f ′(γ) with respect to γ is ( 7

4 − γ) f ′′(γ).
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government may apply any import tariff at or below the cap. In the optimal trade agree-
ment, with positive probability, a government applies a tariff strictly below the cap. The
optimal trade agreement thus corresponds well with actual GATT/WTO rules, under
which member governments negotiate tariff bindings (i.e., caps). Our theory also pro-
vides an interpretation of binding overhang as an implication of an optimally designed
trade agreement.

We develop our findings using a static model, but we can also interpret our results
in a dynamic setting. In particular, if the distribution of types is iid across governments
and over time, and if governments are sufficiently patient, then there exists an optimal
strongly symmetric perfect public equilibrium (SSPPE) for the repeated game in which
the optimal tariff cap is used in each period. The SSPPE solution concept allows that
governments may provide incentives through trade wars (low continuation values), pro-
vided that both governments experience the same expected continuation value. Trade
wars then represent “wasteful”transfers. That such wasteful transfers are suboptimal is
intuitive in light of our finding that wasteful transfers (fake extra-punishments) are not
used in the solution of our Relaxed Program above.

We emphasize, though, that governments may be able to improve upon the optimal
tariff cap in a dynamic setting if the solution concept is expanded to allow for asymmet-
ric continuation values.31 An asymmetric continuation value plays the role of a trans-
fer from the government that anticipates a lower continuation value to the government
that expects a higher continuation value. As Bagwell and Staiger (2005) confirm for the
linear-quadratic example when the distribution function is uniform, if governments are
sufficiently patient, asymmetric perfect public equilibria can be constructed in which gov-
ernments enjoy expected joint welfare in excess of that which would be provided by the
stationary application of the optimal tariff cap. Such asymmetric equilibria provide an
interpretation of the WTO Safeguard Agreement, whereby a government that applies a
tariff in excess of its bound rate loses the option to do so again in the immediate future.
Martin and Vergote (2008) also consider the repeated interaction of privately informed
governments in a linear-quadratic model in which sidepayments and export policies are
infeasible. They show that equilibrium-path retaliation in tariffs is a necessary feature of
an efficient equilibrium among arbitrarily patient governments, and they use this finding
to interpret the retaliatory use of anti-dumping duties.

In this broad context, the present paper may be understood as establishing a strong
benchmark result for the optimal tariff cap. In the absence of transfers or asymmetric

31Indeed, for the repeated game with iid types, if the action and type spaces are finite, then the folk
theorem of Fudenberg, Levine, and Maskin (1994) applies.
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continuation values, and under the conditions that we identify, governments can do no
better than to form an agreement in which they impose the optimal tariff cap. Therefore,
if governments manage to do even better through repeated interaction, then we may now
understand that the source of the gain must be associated with the use of asymmetric con-
tinuation values as transfers. Future work addressing WTO safeguard rules or dynamic
tariff retaliation strategies may proceed from this foundation.
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A Proof of Proposition 1
As a first step we will show that P′(z) < 0. To see this note that taking the derivative with respect
to z in equation (1) is:

u′′(Q(P(z)) + z)
(

Q′(P(z))P′(z) + 1
)
= P′(z) (16)

which solves to P′(z) = −
(

Q′(P(z))− 1
u′′(Q(P(z))+z)

)−1
< 0.

We know show that P′?(z) > 0. To see this, note that the derivative with respect to z in (2) is:

u′′(Q?(P?(z))− z)
(

Q′?(P?(z))P′?(z)− 1
)
= P′?(z) (17)

which solves to P′?(z) =
(

Q′?(P?(z))− 1
u′′(Q?(P?(z))+z)

)−1
> 0.

Now note that Π′(z) = Q(P(z))P′(z) < 0 and using equation (3) and (2), one finds that
V ′(z) = zP′?(z) > 0 where we used that Π′?(z) = Q?(P?(z))P′?(z).

Using equation (5), together with (1), one finds that:

B′(z) = P(z)− P?(z)−Q(P(z))P′(z)− zP′?(z)

B′′(z) = P′(z)− 2P′?(z)−Q′(P(z))(P′(z))2 −Q(P(z))P′′(z)− zP′′? (z)

From the definition of the profits, we have that Π′′(z) = Q′(P(z))(P′(z))2 + Q(P(z))P′′(z). Using
V ′′(z) = zP′′? (z) + P′?(z), we have that B′′(z) + Π′′(z) + V ′′(z) = P′(z)− P′?(z) < 0.

B Proof of Lemma 1
Taking another derivative in equation (16) we obtain that:

P′′(z) = −
Q′′(P(z)) + u′′′(Q(P(z))+z)

(u′′(Q(P(z))+z)3(
Q′(P(z))− 1

u′′(Q(P(z))+z)

)3 ≥ 0

and P′′? (z) ≥ 0. And taking another derivative in equation (17) we obtain that:

P′′? (z) = −
Q′′? (P?(z)) +

u′′′(Q?(P?(z))−z)
(u′′(Q?(P?(z))+z))3(

Q′?(P?(z))− 1
u′′(Q?(P?(z)))

)3 ≥ 0

Using our equation for V ′′(z), it follows that V ′′(z) = zP′′? (z) + P′?(z) > 0. Recall also the equation
for B′′(z):

B′′(z) = P′(z)− 2P′?(z)−Q′(P(z))(P′(z))2 −Q(P(z))P′′(z)− zP′′? (z) < 0

And finally, Π′′(z) = Q′(P(z))(P′(z))2 + Q(P(z))P′′(z) > 0.
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C Linear-Quadratic Example: Variational Analysis
As discussed in the text, we may write the welfare for the home government and the foreign
government respectively as:

w(τ, γ) ≡ 9 + 8γ

98
+

8γ− 5
49

τ +
2[2γ− 17]

49
τ2, and w∗(τ) ≡

25
98
− 3τ

49
+

9τ2

49
.

We may also define the joint welfare function: J(τ, γ) = w(τ, γ) + w∗(τ).
The flexible (Nash) tariff maximizes w(τ, γ) and is given by τf (γ) = 8γ−5

4(17−2γ)
. The efficient

tariff maximizes J(τ, γ) and is given by τe(γ) = 4(γ−1)
25−4γ . Let the support of γ be [γ, γ] where

γ = 1 < γ < 7
4 . Over this support, we may easily verify that τf (γ) > τe(γ). It is also convenient

to define

g(τ) ≡ 9
98
− 5

49
τ − 34

49
τ2 ; and r(τ) ≡ 4

49
+

8
49

τ +
4
49

τ2

so that w(τ, γ) = g(τ) + γr(τ), where r′(τ) > 0 for all τ > −1.
Incentive compatibility implies that any candidate tariff function τ(γ) is nondecreasing. In

our variational analysis, we posit a candidate incentive compatible tariff function τ(γ) and con-
sider whether an alternative incentive compatible tariff function would yield a higher value for
EJ(τ, γ), where the expectation is taken over γ. We restrict attention to tariff functions for which
τ ≥ 0 = τE(γ). We thus focus on non-negative tariffs and hence regard r as strictly increasing.

We begin with our first candidate solution. Assume that there exists a region [γ0, γA] and values
γ1 and γ2 such that γ ≤ γ0 < γ1 < γ2 < γA ≤ γ and

τ(γ) =


τ1 ≤ τf (γ0) , for γ ∈ [γ0, γ1)

τ2 = τf (γ2) , for γ ∈ (γ1, γ2]

τf (γ) , for γ ∈ [γ2, γA].

Incentive compatibility requires that type γ1 is indifferent. This implies that τ1 < τf (γ1) < τ2.
In fact, in this quadratic setting, τf (γ1) = (τ1 + τ2)/2 is required. Over the interval [γ0, γA],
this scheme starts with a low step and then jumps to a high step. The tariff function then “steps
into flexibility,” by joining τf (γ) for γ ∈ [γ2, γA]. No assumptions are made about tariffs for
γ /∈ [γ0, γA].

We consider the following variation: Fix γ0, γA and τ1, and lower γ1 slightly. Notice that this
variation induces slight reductions in γ2 and τ2.

To analyze the joint-welfare implications of this variation, we define τ2(γ1, τ1) for given γ1 and
τ1 by the requirement of incentive compatibility: w(τ1, γ1) = w(τ2, γ1). And also, define γ2(γ1, τ1)
by τ2(γ1, τ1) = τf (γ2). This implies

∂τ2(γ1, τ1)

∂γ1
=

r(τ1)− r(τ2)
∂w(τ2,γ1)

∂τ

> 0, and
∂γ2(γ1, τ1)

∂γ1
=

∂τ2(γ1,τ1)
∂γ1

∂τf (γ2)

∂γ

> 0.

Now consider EJ. The tariffs for types below γ0 and above γA can be left unaltered, since we vary
γ1 and γ2 while maintaining τ1 and τA ≡ τf (γA). Regarding expected joint welfare as a function
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of γ1 and τ1 and differentiating with respect to γ1, we have

∂EJ(γ1, τ1)

∂γ1
=

∂

∂γ1

{ γ1∫
γ0

J(τ1, γ)dF +

γ2∫
γ1

J(τ2, γ)dF +

γA∫
γ2

J(τf (γ), γ)dF

}
,

where we use γ2 as shorthand for γ2(γ1, τ1) and τ2 as shorthand for τ2(γ1, τ1) = τf (γ2). Thus,

∂EJ(γ1, τ1)

∂γ1
= [J(τ1, γ1)− J(τ2, γ1)] f (γ1) +

∂γ2(γ1, τ1)

∂γ1
[J(τ2, γ2)− J(τf (γ2), γ2)] f (γ2)

+

γ2∫
γ1

∂J(τ2, γ)

∂τ

∂τ2(γ1, τ1)

∂γ1
dF. (18)

Since τ2 = τ2(γ1, τ1) = τf (γ2), the second term is eliminated. The first term is positive, and the
third term is negative. Finally, since w(τ1, γ1) = w(τ2, γ1), we may simplify the first term in (18)
and write

∂EJ(γ1, τ1)

∂γ1
= [w∗(τ1)− w∗(τ2)] f (γ1) +

∂τ2(γ1, τ1)

∂γ1

γ2∫
γ1

∂J(τ2, γ)

∂τ
dF. (19)

Proceeding mechanically, we find that [w∗(τ1)−w∗(τ2)] f (γ1) =
3

49 (τ1− τ2)[3(τ1 + τ2)− 1] f (γ1).
We know τ1 + τ2 = 2τf (γ1), and so τ1 − τ2 = 2(τf (γ1)− τ2). We also know τ2 = τf (γ2), and thus
τ1 − τ2 = 2(τf (γ1)− τf (γ2)). Thus,

[w∗(τ1)− w∗(τ2)] f (γ1) =
6
49

(τf (γ1)− τf (γ2))[6τf (γ1)− 1] f (γ1).

Using τ2 = 2τf (γ1)− τ1, we also have that ∂τ2(γ1,τ1)
∂γ1

= 2 ∂τf (γ1)

∂γ = 63
(17−2γ1)2 . Given τ2 = τf (γ2) =

8γ2−5
4(17−2γ2)

, we also find

γ2∫
γ1

∂J(τ2, γ)

∂τ
dF =

1
49

1
2(17− 2γ2)

γ2∫
γ1

(252γ− 168γ2 − 147)dF

Using these findings, we may rewrite (19) as an expression whose right-hand side depends only
on γ1 and γ2, where γ2(γ1, τ1) is an implicit function.

At this point, we employ the uniform distribution F(γ) =
γ−γ

γ−γ . Under this specification, we
can rewrite (19) as

∂EJ(γ1, τ1)

∂γ1
=

−27(γ2 − γ1)
2

(17− 2γ1)2(17− 2γ2)(γ− γ)
< 0. (20)

We conclude from (20) that a strict gain in joint welfare would be achieved, if we were to undertake
a variation entailing a slight reduction in γ1. Consequently, it is not optimal to step into flexibility,
at least when the distribution is uniform.

As noted in the text, we can use this work to consider a related variation in which a small step
is injected into a region of flexibility. Let us take an interval [γ0, γA] and assume that tariffs are
flexible over that interval (τ(γ) = τf (γ) for all γ ∈ [γ0, γA]). Consider a variation in which we
introduce a small step in the interior of the interval. We could evaluate this variation using the
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analysis above if we think of starting with the flexible tariff function, which corresponds to a limit
case of γ0 = γ1, τ1 = τf (γ0) and γ2 = γ1. Now we imagine introducing a slight step by increasing
γ1 to a value slightly above γ0. Holding fixed γ0, τ1 and γA, the new values for γ1, γ2 and τ2 will
be slightly higher, and at the new values we would have τ1 = τf (γ0) < τf (γ1) < τ2 = τf (γ2). To
see the effect of this change, we evaluate (20) at the flexible starting point where γ2 = γ1. Clearly,
there is no first-order effect (i.e., ∂EJ(γ1,τ1)

∂γ1
= 0 when γ2 = γ1). In fact, there is no second-order

effect either (i.e., ∂2EJ(γ1,τ1)
(∂γ1)2 = 0 when γ2 = γ1). Calculations confirm, however, that there is a

negative third-order effect (i.e., ∂3EJ(γ1,τ1)
(∂γ1)3 < 0 when γ2 = γ1), provided that ∂γ2(γ1,τ1)

∂γ1
6= 1. This

provision indeed holds in the linear-quadratic model, since we may show that ∂γ2(γ1,τ1)
∂γ1

= 2 as γ2
approaches γ1. Thus, due to third-order effects, expected joint welfare is strictly reduced, when a
tiny step is introduced into a region of flexibility.

We come now to our second candidate solution. Assume that there exists a region [γ0, γ2] and a
value γ1 such that γ ≤ γ0 < γ1 < γ2 ≤ γ and

τ(γ) =


τf (γ) , for γ ≤ γ0

τ1 = τf (γ0) , for γ ∈ [γ0, γ1)

τ2 , for γ ∈ (γ1, γ2].

Incentive compatibility requires that type γ1 is indifferent, which ensures that τ1 < τf (γ1) < τ2.
In fact, in the quadratic setting, we must have τf (γ1) = (τ1 + τ2)/2. Over the interval [γ, γ2], this
tariff function starts flexible but eventually “steps out of flexibility.”

We will consider a variation in which we leave τ2, γ2 and thus the play of types above γ2
(if any) unaltered. In particular, we consider the following variation: Fix τ2 and γ2 and raise γ1
slightly. Notice that this variation induces slight increases in τ1 and γ0.

To analyze the joint-welfare implications of this variation, we must characterize the induced
changes in τ1 and γ0. We thus define τ1(γ1, τ2) by the incentive compatibility requirement that
w(τ1, γ1) = w(τ2, γ1). And, we define γ0(γ1, τ2) by τ1(γ1, τ2) = τf (γ0). This implies

∂τ1(γ1, τ2)

∂γ1
=

r(τ2)− r(τ1)
∂w(τ1,γ1)

∂τ

> 0, and
∂γ0(γ1, τ2)

∂γ1
=

∂τ1(γ1,τ2)
∂γ1

∂τf (γ0)

∂γ

> 0.

Now consider EJ. Our variation will not affect the behavior of types above γ2. Thus, regarding
expected joint welfare as a function of γ1 and τ2 and differentiating with respect to γ1, we have

∂EJ(γ1, τ2)

∂γ1
=

∂

∂γ1

{ γ0∫
γ

J(τf (γ), γ)dF +

γ1∫
γ0

J(τ1, γ)dF +

γ2∫
γ1

J(τ2, γ)dF

}
,

where we use γ0 as shorthand for γ0(γ1, τ2) and τ1 as shorthand for τ1(γ1, τ2). Thus,

∂EJ(γ1, τ2)

∂γ1
=

∂γ0(γ1, τ2)

∂γ1
[J(τf (γ0), γ0)− J(τ1, γ0)] f (γ0) + [J(τ1, γ1)− J(τ2, γ1)] f (γ1)

+

γ1∫
γ0

∂J(τ1, γ)

∂τ

∂τ1(γ1, τ2)

∂γ1
dF. (21)
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Since τ1 = τ1(γ1, τ2) = τf (γ0), the first term is eliminated. The second term is positive, and the
third term may be negative (if, for example, τ1 > τe(γ1)). Finally, since w(τ1, γ1) = w(τ2, γ1) by
incentive compatibility, we may simplify the second term in (21) and write

∂EJ(γ1, τ2)

∂γ1
= [w∗(τ1)− w∗(τ2)] f (γ1) +

∂τ1(γ1, τ2)

∂γ1

γ1∫
γ0

∂J(τ1, γ)

∂τ
dF. (22)

Proceeding mechanically, we find that [w∗(τ1)−w∗(τ2)] f (γ1) =
3

49 (τ1− τ2)[3(τ1 + τ2)− 1] f (γ1).
We know τ1 + τ2 = 2τf (γ1), and so τ2 − τ1 = 2(τf (γ1) − τ1) = 2(τf (γ1) − τf (γ0)). Thus,
[w∗(τ1) − w∗(τ2)] f (γ1) = 6

49 (τf (γ0) − τf (γ1))[6τf (γ1) − 1] f (γ1). Using τ1 = 2τf (γ1) − τ2, we

have that ∂τ1(γ1,τ2)
∂γ1

= 2 ∂τf (γ1)

∂γ = 63
(17−2γ1)2 . Given τ1 = τf (γ0) =

8γ0−5
4(17−2γ0)

,we also find

γ1∫
γ0

∂J(τ1, γ)

∂τ
dF =

1
49

1
2(17− 2γ0)

γ1∫
γ0

(252γ− 168γ0 − 147)dF.

Using these findings, we may rewrite (22) as an expression whose right-hand side depends only
on γ0 and γ1, where γ0(γ1, τ2) is an implicit function.

At this point, we suppose F is uniform, so that F(γ) = γ−γ

γ−γ . Under this specification, we can
rewrite (22) as

∂EJ(γ1, τ1)

∂γ1
=

27(γ1 − γ0)2

(17− 2γ1)2(17− 2γ0)(γ− γ)
> 0. (23)

We conclude from (23) that a strict gain in joint welfare would be achieved, if we were to undertake
a variation entailing a slight increase in γ1. Consequently, it is not optimal to step out of flexibility,
at least when the distribution is uniform.

D Proof of Lemma 4
Let d(x) ≡ E[γ|γ > x]− x =

∫ γ̄
x

1−F(γ)
1−F(x) dγ. The following lemma is useful.

Lemma 9. If f (x) is non-decreasing, then g(x) ≡ d(x)
1−F(x) is such that g(x) ≤ 1

2 f (x)

Proof. Note that

g′(x) =
d′(x)

1− F(x)
+

d(x)
1− F(x)

f (x)
1− F(x)

=
g(x) f (x)− 1

1− F(x)
+

g(x) f (x)
1− F(x)

=
2g(x) f (x)− 1

1− F(x)

where we used that d′(x) = −1 + d(x) f (x)
1−F(x) . We also know that limx→γ̄ g(x) = 1

2 f (γ̄) (which
follows from applying L’Hopital’s rule on d(x)/(1− F(x))). From the ODE it follows then that if
g(x0) >

1
2 f (x0)

for some x0 then g′(x0) > 0 and given that f (x) is non-decreasing, this implies that

g(x) > 1
2 f (x0)

≥ 1
2 f (γ̄) for all x > x0, which is a contradiction of the limit condition.

Now we are ready to prove Lemma 4. Assumption 2(b) can be written as:

G(γc) = E[γ|γ > γc]−E[γ|γ > γp]− κ(γc − γp) ≤ 0
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for all γ ≥ γp by using Lemma 2. Note that G(γp) = 0 and

G′(γc) =
d

dγc (E[γ|γ > γc])− κ = d′(γc) + 1− κ =
d(γc) f (γc)

1− F(γc)
− κ ≤ 1

2
− κ

where the last inequality follows from f non-decreasing and Lemma 9. Letting κ ≥ 1
2 implies that

G′(γc) ≤ 0 for all γc > γp which proves that G(γc) ≤ 0 for all γc > γp.
Assumption 2(a) is that H(γ) = κF(γ)− v′(π f (γ)) f (γ) is non-decreasing. Taking the deriva-

tive:

H′(γ) =κ f (γ) +
v′′(π f (γ))

b′′(π f (γ))
f (γ)− v′(π f (γ)) f ′(γ)

=

{
κ +

v′′(π f (γ)) + b′′(π f (γ))

b′′(π f (γ))
− 1
}

f (γ)− v′(π f (γ)) f ′(γ)

where we used that π′f (γ) = −1/b′′(π f (γ)). It follows that H′(γ) ≥ (2κ− 1) f (γ)− v′(π f (γ)) f ′(γ).
Using the definition of κ, it then follows that for κ ≥ 1/2 and f (γ) non-decreasing we have that
H′(γ) ≥ 0. Thus, we have proved Assumption 2.

E Proof of Lemma 8
The proof follows closely the proof for the sufficiency result of the Lemma of Optimality in Amador
et al. (2006). First we show that if there exists a non-decreasing Λ0 such that

L(x, y|Λ0) ≤ L(π?, 0|Λ0), for all(x, y) ∈ Φ

then (π?, 0) solves the relaxed problem. This result follows from Theorem 1, pg. 220 in Lu-
enberger (1969), by letting X ≡ {π, ω|ω ≥ 0 and π : Γ → R}, Ω ≡ Φ, Z ≡ {z|z : Γ →
R with supγ∈Γ |z(γ)| < ∞} with norm ||z|| = supγ∈Γ |z(γ)|, and P ≡ {z|z ∈ Z and z(γ) ≥
0 for all γ ∈ Γ}. The value of f will be the objective function, and the value of G((π, w)) defines
a mapping from X to a function of γ given by the left-hand side of inequality (13). Given that
the proposed allocation satisfies (13) with equality, it follows that G((π?, 0))(γ) = 0 for all γ ∈ Γ.
Then our set up satisfies the hypothesis of the Theorem, implying that (π?, 0) maximizes the ob-
jective function subject to G((x, y))(γ) ≤ G((π?, 0)) = 0 for all γ ∈ Γ. To be able to use the rest
of the results in Amador et al. (2006) we need to extend the function v(.) and b(.) to the entire
positive side of the real line. To do this, we let v̂ be the linear extension of v starting from π̄:

v̂(π) =

{
v(π) , if π ∈ [0, π̄]

v(π̄) + v′(π̄)(π − π̄) , if π > π̄
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which is well-defined if v′(π̄) is finite. We define b̂(π) in a similar fashion.32 Then we let Φ̂ =
{(π, ω)|ω ≥ 0, π : Γ → R+ and π non-decreasing}. Note that Φ̂ is a convex cone and that both
b̂ and v̂ + (1− κ)b̂ remain continuous, differentiable and concave on π ∈ R+. This implies that
the results of Lemma 7 extend to (π, ω) ∈ Φ̂, and the extended Lagrangian, which we denote by
L̂, is concave. We can then use Lemma A.1 from Amador et al. (2006) and show that the Gateaux
differential of the extended Lagrangian exists because the Lagrangian functional when evaluated
at the proposed multiplier can be written as the sum of terms that can be expressed as integrals
with concave differentiable integrands and that the extended Lagrangian is defined over a convex
cone Φ̂. Finally using Lemma A.2 from Amador et al. (2006) (which is itself an extension of Lemma
1 in Luenberger, 1969, page 227), we obtain that a sufficient condition for optimality is that:

∂L̂(π?, 0; π?, 0|Λ0) = 0

∂L̂(π?, 0; x, y|Λ0) ≤ 0

hold for all (x, y) ∈ Φ̂. Now, note that if (x, y) ∈ Φ̂, then for all sufficiently small α > 0 we
have that (αx, αy) ∈ Φ and ∂L̂(π?, 0; x, y|Λ0) =

1
α ∂L̂(π?, 0; αx, αy|Λ0). So it is sufficient to check

the above two first order conditions for all (x, y) ∈ Φ. But given that both (π?, 0) ∈ Φ and that
(π? + αx, αy) ∈ Φ for all α small enough (as π?(γ) < π̄ for all γ ∈ Γ given our assumption of
an interior flexible allocation), we have then, by the definition of the Gateaux differential, that
∂L̂(π?, 0; x, y|Λ0) = ∂L(π?, 0; x, y|Λ0) for all (x, y) ∈ Φ, which completes the proof.

F Proof of Proposition 4
The following Lemma will be used:

Lemma 10. In the linear-quadratic case, if κF(γ)− v′(π f (γ)) f (γ) is non-decreasing for all γ ∈ Γ, then
Assumption 2 is satisfied.

Proof. Let X(γ) = (1− F(γ))G(γ). Then we can show that:

X′(γ) = −κ + κF(γ)−
[
v′(π f (γ

p)) + (1− κ)(γ− γp)
]

f (γ)

In the linear-quadratic case, we have that v′(π f (γ)) = v′(π f (γ
p)) + (1− κ)(γ− γp), and thus

X′(γ) = −κ + κF(γ)− v′(π f (γ)) f (γ)

which is non-decreasing by the hypothesis of the Lemma. This implies then that X(γ) is a convex
function of γ. Note that X(γ̄) = 0 and X′(γ̄) = −v′(π f (γ̄)) f (γ̄) > 0. It then follows that X(γ)
has at most another 0 for γ < γ̄, which corresponds to γp. This also implies that X(γ) < 0 for all
γ ∈ (γp, γ̄) and thus G(γ) < 0 as well, which proves Assumption 2(b). Assumption 2(a) follows
directly from the hypothesis of the Lemma.

32In case that limπ→π̄ b′(π) = −∞, then one can define the linear extension of b starting from some
π0 ∈ (π f (γ̄), π̄) such that b′(π0) is finite. Concavity of b implies b̂(π) ≥ b(π) for π ∈ [π0, π̄], and hence
the Lagrangian using this extension of b will lie weakly above the original Lagrangian for π ∈ [π0, π̄] . In
case that limπ→π̄ v′(π) = −∞, then there exists a π0 ≤ (π f (γ̄), π̄) which is sufficiently close to π̄ such that
the linear extension of v from π0 to +∞ generates a v̂ such that v̂(π) ≥ v(π) for all π ∈ [π0, π̄]. This follows
from showing that there always exists a π0 sufficiently close to π̄ such that v′(π0) ≥ v′(π) for π ∈ [π0, π̄].
Again this extension implies a relaxation of the Lagrangian. Once these extensions are done, the rest of the
proof proceeds in similar fashion.
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To prove Proposition 4 we just need to show that κF(γ)− v′(π f (γ))γ) f (γ) is non-decreasing
in γ ∈ Γ and invoke Lemma 10. Assuming differentiability of γ, and using that in our example
κ = 2/3 and that v′′/b′′ = −1/3, we get that κF(γ)− v′(π f (γ)) f (γ) is non-decreasing if

2
3

f (γ) +
v′′(π f (γ))

b′′(π f (γ))
f (γ)− v′(π f (γ)) f ′(γ) ≥ 0,

or equivalently 1
3 f (γ)− v′(π f (γ)) f ′(γ) ≥ 0, the condition stated in Proposition 4.

G An Example with Logarithmic Utility
In what follows we develop an endowment example and show how the result above allow us to
characterize the optimal trade agreement. Assume that u(c) = log(c) and that Q(p) = 1 and
Q?(p) = A where A > 1. Then we can write that B = −p− p?z− log(p), V = p?z− log(p?) and
Π = p, and where p = (1 + z)−1 and p? = (A− z)−1.

Note that free trade is z = 1
2 (A− 1). Writing everything in terms of π delivers:

b(π) = −π +
π − 1

(A + 1)π − 1
− log(π), and v(π) =

1− π

(A + 1)π − 1
− log

(
π

(A + 1)π − 1

)
and where z = 1

π − 1.
The free trade allocation corresponds to: π f t = 2

1+A . The amount of zero trade is given by π̄ =

1. We will restrict attention to a set of admissible π ∈ [π f t, 1], which is equivalent to restricting
tariffs to be non-negative. Note that v′(π) = π−1

π((A+1)π−1)2 ≤ 0 and note as well that b′′(π) = 1
π2 −

2A(1+A)
((A+1)π−1)3 , which is non-positive for all π ∈ [π f t, 1] if 1 ≤ A ≤ 1 +

√
3. And thus Assumption 1

is satisfied for 1 ≤ A ≤ 1 +
√

3.
Similarly one can show that v′′(π) + b′′(π) = 2+(A+1)π((A+1)π−4)

π2((A+1)π−1)2 . Using the above, the value
of κ can be found to be:

κ =

{
2(A+1)
7A−1 ; for 1 ≤ A ≤ 4+

√
41

5
−1−2A+A2

−2−2A+A2 ; for 4+
√

41
5 ≤ A ≤ 1 +

√
3

Note that κ ≥ 0 for all A ∈ [1, 1 +
√

2]. Also for A close to 1, κ ∼ 2/3, which implies that As-
sumption 2 will be satisfied for distributions with non-decreasing densities when A is sufficiently
close to 1.
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