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This Online Appendix has two parts. First, we examine and compare the entry-externality

effect in the Melitz-Ottaviano (MO) and CES models, respectively, as considered by Bagwell

and Lee (2018, 2020). Second, we provide a numerical assessment of the assumption that

U(χ, χ) is quasi-concave. A brief summary of this assessment appears in Bagwell and Lee

(2020).

1 Entry-externality Effects under MO and CES

1.1 Characterizing the Entry-externality Effects

In the MO model and in the benchmark closed-economy setting, additional entry generates

a positive externality if and only if

α− 2 · cmD < 0 (1)

where α is a preference parameter and cmD refers to the critical cut-off cost level in market

equilibrium, a function of parameters other than α. As in Bagwell and Lee (2020), we assume

that α > cmD .1

To interpret the sign of (1), we establish now that (1) holds if and only if additional entry

raises the aggregate profit of the economy starting at market equilibrium,

d

dNE

NE · π̄|NE=Nm
E
> 0. (2)

∗Authors’ email addresses: kbagwell@stanford.edu and seunghoon@econ.gatech.edu.
1When we discuss here the MO model, the notation is understood in the context of that model as examined

by Bagwell and Lee (2020).
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The necessary and sufficient relationship between (1) and (2) can be shown by using the

following equations from Bagwell and Lee (2020),

π̄ =
(cM)−k (cD)k+2

2γ(k + 1)(k + 2)
(3)

NE =
2 (1 + k) γ(cM)k

η

(α− cD)

(cD)k+1
(4)

dcD
dNE

= (
dNE

dcD
)−1 = −(

2(1 + k)γ(cM)k(α(1 + k)− kcD)

η(cD)k+2
)−1 < 0, (5)

where cD refers to the critical cut-off cost level that is associated with a given selection for

the level of entry, NE. In these expressions, cM is the scale parameter and k is the shape

parameter of Pareto distribution G (c) = (c/cM)k for c ∈ [0, cM ], and α, γ, η are preference

parameters as described in the main paper. We observe from (4) that α > cmD is equivalent

to Nm
E > 0.

Using (3), we derive

dπ̄

dNE

=
(cM)−k (cD)k+2

2γ(k + 1) (k + 2)

(k + 2)

cD

dcD
dNE

= π̄
(k + 2)

cD

dcD
dNE

. (6)

Using (3), (4), (5), and (6), we evaluate (2) as follows:

d

dNE

NE · π̄|N̂E=N̂m
E

= π̄ +NE
dπ̄

dNE

|NE=Nm
E

= π̄

(
1 +NE

(k + 2)

cD

dcD
dNE

)
|NE=Nm

E

= π̄

(
−α + 2 · cD

(α(1 + k)− kcD)

)
|NE=Nm

E
,

where cD = cmD when NE = Nm
E and where α(1 + k) − kcD > 0 thus follows from α > cmD .

This shows the necessary and sufficient relationship stated above.

We may now summarize our finding for the MO model as follows: starting at the market

equilibrium, additional entry generates a positive externality if and only if it raises the

aggregate profit, d
dNE

NE · π̄|NE=Nm
E
> 0.

We now follow Bagwell and Lee (2018) and examine the model with CES preferences.2

In the CES model, firm-level productivity ϕ ∈ [1,∞) is distributed according to a Pareto

distribution with shape parameter k, so that G (ϕ) = 1 − ϕ−k. Under CES preferences, we

2When we discuss here the CES model, the notation is understood in the context of that model as
examined by Bagwell and Lee (2018).

2



claim that d
dNE

NE · π̄|NE=Nm
E
> 0 holds and this inequality offers a sufficient condition for

EXT > 0 at NE = Nm
E . To establish this claim, we proceed in three steps. First, we observe

that, if dCS
dNE

> π̄, then

EXT =
dCS

dNE

+NE
dπ̄

dNE

> π̄ +NE
dπ̄

dNE

=
d

dNE

NE · π̄, (7)

and so d
dNE

NE · π̄ would then offer a lower bound for EXT . Second, we show that dCS
dNE

> π̄

in fact holds for NE > 0 and thus in particular for NE = Nm
E . Third, we confirm that

d
dNE

NE · π̄|NE=Nm
E
> 0.

The first step is immediate from (7). To confirm the second step, we use Bagwell and

Lee’s (2018) finding that

dCS

dNE

=
(σ − 1)(1− θ)
σ(1− θ)− 1

· (P )
−θ
1−θ

NE

· εϕ∗,NE

where

(P )
−θ
1−θ = NE ·

σ

σ − 1
· k · π̄

π = (ϕ∗)−k
(σ − 1) fD
1 + k − σ

Υ (NE)
1

σ−1 = (ϕ∗)
k+1−σ
σ−1

+
(1−θ)(σ−1)
σ(1−θ)−1 ,

where Υ > 0 is a constant and where εϕ∗,NE ≡
dϕ∗

dNE

NE
ϕ∗ can be computed from the last of

these expressions. We may now confirm that

dCS

dNE

− π̄ =

(
(1− θ) kσ
σ (1− θ)− 1

· εϕ∗,NE − 1

)
π̄

=

(
(1 + k − σ) + (σ (1− θ)− 1) + θ

k (σ (1− θ)− 1) + θ (σ − 1)

)
π̄ > 0

which shows that dCS
dNE

> π̄ holds when NE > 0 and thus π̄ > 0. Since Nm
E > 0, it thus follows

that (7) holds at NE = Nm
E .

For the third step, we show that d
dNE

NE · π̄|NE=Nm
E
> 0 holds regardless of parameters.
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In particular, for NE > 0, we find that

d

dNE

NE · π̄ = π̄ +NE
dπ̄

dNE

= π̄ −NE
k

ϕ∗
π̄
dϕ∗

dNE

= (1− k · εϕ∗,NE) π̄ =

(
1−

k
σ−1

k+1−σ
σ−1

+ (1−θ)(σ−1)
σ(1−θ)−1

)
π̄ > 0

where the above inequality holds by

k + 1− σ
σ − 1

+
(1− θ) (σ − 1)

σ (1− θ)− 1
=

k

σ − 1
+

θ

σ (1− θ)− 1
>

k

σ − 1
.

It thus follows that d
dNE

NE · π̄|NE=Nm
E
> 0.

Summing up, under CES preferences, we have shown that d
dNE

NE · π̄|NE=Nm
E
> 0 holds

regardless of parameter values, and that this inequality in turn is a sufficient condition for

EXT > 0 at NE = Nm
E .

1.2 Conditional Expected Profit

Since the sign of d
dNE

NE · π̄|NE=Nm
E

seems to play an important role in both models, we

explore further why the two models show different implications. We rewrite aggregate profit

as N · π̄c where N refers to the number of operating firms and π̄c refers to expected profit of

a firm conditional on its survival.3 In both models, we can separate two channels through

which additional entry affects aggregate profit:

d

dNE

N · πc =
dN

dNE

πc +N
dπc
dNE

. (8)

In the MO model, we find that two opposing forces exist at NE = Nm
E : i) using (3) and (5),

additional entry raises the number of operating firms, dN
dNE

πc > 0; and ii) using (4) and (5),

the surviving firms have lower profit due to the higher competition, N dπc
dNE

< 0. However, in

the CES model, the second channel is absent since the conditional expected profit is constant,

π̄c = (σ − 1) fD/ (1 + k − σ).4 This feature of constant conditional expected profit provides

some additional insight into why the CES model shows EXT > 0 regardless of parameter

values.

3We note that π̄c = π̄/ (1−G (ϕ∗)) in the CES model and π̄c = π̄/G (cD) in the MO model, where the
notation in each case is understood in the context of the model to which it is applied.

4The derivation of π̄c follows from the expression given above for π̄ and from the fact that 1−G(ϕ∗) =
(ϕ∗)−k for the Pareto distribution.
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1.3 Role of Endogenous Mark-up

We now argue that constant expected profit conditional on survival can be explained by

the role of constant markup. To make this argument, we follow Mrazova et al (2017) and

consider the CREMR (Constant Revenue Elasticity of Marginal Revenue) family of demand

functions defined as

pcr (q) =
β

q
(q − ψ)

σ−1
σ .

where β > 0, σ > 1 and q > ψσ. As Mrazova et al (2017) observe, this family includes CES

demand as a special case: when ψ = 0, the elasticity of demand is constant and equal to σ.

We focus here on ψ ≥ 0.

The associated profit-maximization problem is

πcr (ϕ) = max

{
max
q

[(
pcr (q)− 1

ϕ

)
q − fD

]
, 0

}
where fD > 0 and the firm’s productivity is ϕ. We assume that ϕ follows a Pareto distribution

with shape parameter k (i.e. G (ϕ) = 1−ϕ−k) where 1 + k− σ > 0. We denote the markup

of a firm with productivity ϕ as

µ (ϕ) ≡
pcr (qcr (ϕ))− 1

ϕ

pcr (qcr (ϕ))
=

1

σ
− ψϕ−σ

B

where B ≡ βσ
(
σ−1
σ

)σ−1
and qcr (ϕ) =

(
σ−1
σ
β · ϕ

)σ
+ ψ refers to the equilibrium output level

of a firm with productivity ϕ. If ψ > 0, then we have that a more efficient firm charges a

higher markup

µ′ (ϕ) = ψ
σ

B
ϕ−σ−1 > 0 (9)

as in the MO setup. By contrast, if ψ = 0, then the markup is constant with respect to

productivity as in the CES model.

We calculate the conditional expected profit with CREMR preferences as follows

π̄crc =

∫ ∞
ϕ∗

πcr (ϕ) dG (ϕ|ϕ > ϕ∗) = B

∫ ∞
ϕ∗

µ (ϕ)ϕσ−1dG (ϕ|ϕ > ϕ∗)− fD

=
fD (σ − 1)

1− σ + k
+

k ·B
1− σ + k

(ϕ∗)k
∫ ∞
ϕ∗

µ′ (ϕ) · ϕσ−k−1dϕ. (10)

where the third equality holds by integration by parts and the ZCP condition

πcr (ϕ∗) = 0⇒ µ (ϕ∗) · (ϕ∗)σ−1 =
fD
B
.
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The first term in (10) coincides with the conditional expected profit under CES preferences.

The second term in (10) shows the role of endogenous markups, a missing channel under

CES preferences.

If ψ = 0 (i.e. µ′ (ϕ) = 0), then it is clear from (10) that π̄crc is constant with respect to

the critical productivity cutoff level, ϕ∗, as in the CES model. By contrast, if ψ > 0 (i.e.

µ′ (ϕ) > 0), then π̄crc decreases with ϕ∗. To establish this latter point, we substitute (9) into

(10) and find that

π̄crc =
fD (σ − 1)

1− σ + k
+

ψ · k · σ
(1− σ + k) (k + 1)

1

ϕ∗

from which it directly follows that, for ψ > 0,

dπ̄crc
dϕ∗

= − ψ · k · σ
(1− σ + k) (k + 1)

1

(ϕ∗)2 < 0.

If we were to embed this analysis into a model of monopolistic competition and assume

that more entry generates fiercer competition, dϕ∗

dNE
> 0, as is standard, then for ψ > 0 the

expected profit conditional on survival would decrease with additional entry, dπ̄crc
dNE

< 0, as in

the MO model. For ψ = 0, by contrast, the expected profit conditional on survival would

be constant with respect to additional entry, dπ̄crc
dNE

= 0, as in the CES setup. From this

perspective, one component of the business-stealing effect in (8) is eliminated under CES

preferences alone among all preferences in the CREMR family. This feature relates to our

discussion in the preceding subsection and provides some reinforcing insight into why the

CES model delivers EXT > 0 regardless of parameter values.

2 Numerical Assessment: Quasi-concavity of U(χ, χ)

In this section, we provide numerical evidence for quasi-concavity of U(χ, χ), as assumed in

Propositions 10-12. However, it is not trivial to numerically test quasi-concavity.5 Hence,

we first provide a proposition to guide our numerical analysis. For notational convenience,

we will write U(χ, χ) as U(χ).

Definition U is quasi-concave on χ ∈ [χL, χU ] ⇐⇒ For any χ1, χ2 ∈ [χL, χH ], U (χ1) ≤
U (χ2) implies

U (t · χ1 + (1− t)χ2) ≥ U (χ1) for t ∈ [0, 1].

5We cannot simply check the second order conditions since U(χ, χ) does not satisfy (global) concavity for
some parameter sets. In Figure 1, we replace U(χ, χ) with U(χ) for notational convenience, and illustrate
U(χ) and U ′′(χ) with the benchmark parameters in the main text as α = 2, cM = 1, k = 1.1, fe = 0.1,
τ = 1.1, and γ = η = 1. Sub-figure (a) shows that global maximum of U(χ) is well defined at χ = 1.03, but
sub-figure (b) shows that concavity fails for χ > 1.6.
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Proposition 1 U is quasi-concave over χ ∈ [χL, χU ] if the following conditions are satisfied:

1. There exists unique χ∗ ∈ (χL, χH) such that U ′ (χ∗) = 0,

2. U ′ (χL) > 0,

3. U ′ (χU) < 0,

4. U ′ (χ) is continuous over χ ∈ [χL, χU ].

Proof. Note that the above four conditions imply:

U ′ (χ) > 0 for χ < χ∗ (11)

U ′ (χ) < 0 for χ > χ∗

Otherwise, χ∗ is not unique. Now we check the definition of quasi-concave using (11). We

pick some χ1, χ2 ∈ [χL, χU ]. Without loss of generality, we assume U (χ1) < U (χ2). Under

the given assumptions, we consider the four cases: 1. χ1, χ2 > χ∗, 2. χ1, χ2 < χ∗, 3.

χ1 < χ∗ < χ2, 4. χ2 < χ∗ < χ1.

In case 1, χ2 < χ1 by (11). For any χ such that χ2 < χ < χ1, U (χ) > U (χ1) holds by

(11).

In case 2, χ2 > χ1 by (11). For any χ such that χ1 < χ < χ2, U (χ) > U (χ1) holds by

(11).

In case 3, we consider two sub-cases.

i) For χ ∈ [χ1, χ
∗], U (χ) is increasing with χ by (11). Therefore, U (χ1) < U (χ).

ii) For χ ∈ [χ∗, χ2], U (χ) is decreasing with χ by (11). Therefore, U (χ2) < U (χ). By

the given assumptions, U (χ1) < U (χ2) < U (χ).

In case 4, we can show U (χ1) < U (χ) for any χ ∈ [χ2, χ1] by the same logic as in case

3.

We numerically confirm quasi-concavity of U(χ) by checking the four conditions in Propo-

sition 1. We start with the benchmark case in the draft as α = 2, cM = 1, k = 1.1, fe = 0.1,

τ = 1.1, and γ = η = 1. Then we vary the values of individual parameters k, τ , α, and γ

one by one.6 For the range of χ, the lower bound is determined as 0.95 (= τ−1/2) following

footnote 16 in the main text, and its upper bound is determined as 10.7

6Note that variations of cM and fe have equivalent effect as variations of α since they affect the equilibrium
through clD. Variations of η are not provided either since their impact on the equilibrium may be determined
by the relative size of other demand parameters, α and γ.

7We conservatively pick this upper bound of χ. χN is bounded above by 3 as α increases from the
benchmark case. See Figure 2.
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For example, Figure 3 illustrates U ′(χ) for χ ∈ [0.95, 10] with the benchmark parameters

and shows that the four conditions in Proposition 1 are satisfied. First, there exists unique

χ∗ = 1.03 such that U ′(χ∗) = 0. Second, U ′(0.95) > 0. Third, U ′(10) < 0. Lastly, U ′(χ) is

continuous on χ ∈ [0.95, 10]. We automatize this graphical analysis for the remaining cases

using Mathematica.8 We build a vector of χ ranging from 0.95 to 10 with the length of

100 (i.e. size of each grid is approximately 0.09). Then, we numerically check whether this

χ-vector satisfies these four conditions for different parameter sets. With the χ-vector, we

numerically check whether U ′(0.95) > 0 and U ′(10) < 0 hold, and we also confirm the sign of

U ′(χ) is reversed for only one time to conclude quasi-concavity.9 If one of the four sufficient

conditions fail, we say that quasi-concavity “may fail.”

In the main text, α > cFTD is assumed to guarantee N l
E > 0, and many of our main findings

depend on the sign of α−2cFTD . Hence, our numerical analysis only considers parameter sets

satisfying α > cFTD and studies whether the quasi-concavity depends on the sign of α−2cFTD .

Here is the summary of our numerical findings:

1. For variations of τ and k, the quasi-concavity of U(χ) seems very robust. We do not

find any such parameter variations for which quasi-concavity fails, regardless the sign

of α− 2cFTD .

2. For variations of demand parameters α and γ, the relative size of α to cFTD plays a

role. When α/cFTD is closed to 1, quasi-concavity of U(χ) may fail. But when α/cFTD is

close to or bigger than 2, quasi-concavity holds. This implies that the quasi-concavity

may fail if the marginal utility of differentiated good is too low (α is too low) or the

degree of differentiation within the differentiated sector is too high (γ is too high). But

quasi-concavity is robust in neighborhood of a parameter set satisfying α = 2cFTD .

Details of the numerical exercises

k variation

We vary the value of k while other parameters are fixed at their benchmark values. The

value of k varies from 1.01 to 10.10 The number of grids is 60, and thus the size of each grid

is approximately 0.15. Since α > cFTD holds for all k in our sample and α = 2cFTD is satisfied

at k=1.59, we cover both cases of α ≥ 2cFTD and α < 2cFTD . For each value of k, we build a

8Mathematica codes are available upon request.
9There are two potential limitations in our numerical exercise. The last condition of continuity is hard

to automatize. Our numerical method does not exclude a case where there exists a tiny interval (within a
grid) where the sign of U ′(χ) is reversed twice. After drawing a number of figures, we assume that U(χ) is
continuous and our grids are fine enough.

10We restrict k > 1 in order to avoid zeros in denominators.
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vector of U ′(χ) using the χ-vector we described above and find that the four conditions in

Proposition 1 are satisfied.

τ variation

We vary the value of τ while other parameters are fixed at their benchmark values. The

value of τ varies from 1 to 10. The number of grids is 60, and thus the size of each grid is

0.15. Since α > cFTD holds for all τ in our sample and α = 2cFTD is satisfied at τ=2.97, we

cover both cases of α ≥ 2cFTD and α < 2cFTD . For each value of τ , we build a vector of U ′(χ)

using the χ-vector we described above and find that the four conditions in Proposition 1 are

satisfied.11

α variation

We vary the value of α while other parameters are fixed at their benchmark values. We vary

the value of α from 0.88 (= cFTD ) to 2.65 (= 3cFTD ). Since α ≥ 2cFTD is satisfied for α ≥ 1.77,

we cover both cases of α ≥ 2cFTD and α < 2cFTD . The number of grids between these two

values is 60 and thus the size of grid is approximately 0.03. For robustness, we also check

the cases of α = 4 and α = 10. For each value of α, we build a vector of U ′(χ) using the

χ-vector we described above and check the four conditions in Proposition 1. We find that

quasi-concavity fails if the value of α < 1.53 but holds otherwise. Our numerical results

thus suggest that quasi-concavity holds in the neighborhood of a parameter set satisfying

α ≥ 2cFTD but may fail if the marginal utility from the differentiated good is too low (α is

too low).

γ variation

We vary the value of γ while other parameters are fixed at their benchmark values. We

vary the value of γ from 0.01 to 12.52 (satisfying α = cFTD ). Since α ≥ 2cFTD is satisfied for

γ < 1.46, we cover both cases of α ≥ 2cFTD and α < 2cFTD . The number of grids between

these two values is 60 and thus the size of grid is approximately 0.21. For each value of γ, we

build a vector of U ′(χ) using the χ-vector we defined above and check the four conditions in

Proposition 1. We find that quasi-concavity fails if the value of γ ≥ 2.51 but holds otherwise.

Our numerical results thus suggest that quasi-concavity holds in the neighborhood of a

parameter set satisfying α ≥ 2cFTD but may fail if the degree of differentiation within the

differentiated good is too high (γ is too high).

11When we vary the value of τ , the lower bound of τ−1/2 should also change. For convenience, we set the
lower bound of χ to 0.8 for every case, instead of 0.95.
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4 Figures
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(a) U(χ) at benchmark parameter values.
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(b) U ′′(χ) at benchmark parameter values.

Figure 1: Global maximum and quasi-concavity.
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Figure 2: χN as α varies from its benchmark value (α = 2).
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Figure 3: U ′(χ) at benchmark parameter values.
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